联邦学习示例项目:更改结构
This commit is contained in:
370
fed_example/utils/train_utils.py
Normal file
370
fed_example/utils/train_utils.py
Normal file
@@ -0,0 +1,370 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import roc_auc_score, accuracy_score
|
||||
import copy
|
||||
import torch.nn.functional as F
|
||||
import random
|
||||
|
||||
|
||||
def train_deepmodel(device, model, loader, optimizer, criterion, epoch, model_name):
|
||||
model.train()
|
||||
running_loss = 0.0
|
||||
corrects = 0.0
|
||||
alpha = 1
|
||||
beta = 0.1
|
||||
for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'):
|
||||
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs, re_img = model(inputs)
|
||||
loss = criterion(outputs.squeeze(), labels.float())
|
||||
loss_F1 = F.l1_loss(re_img, inputs)
|
||||
loss = alpha * loss + beta * loss_F1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
|
||||
avg_loss = running_loss / len(loader)
|
||||
print(f'{model_name} Training Loss: {avg_loss:.4f}')
|
||||
return avg_loss
|
||||
|
||||
|
||||
def validate_deepmodel(device, model, loader, criterion, epoch, model_name):
|
||||
model.eval()
|
||||
running_loss = 0.0
|
||||
correct, total = 0, 0
|
||||
all_labels, all_preds = [], []
|
||||
val_corrects = 0.0
|
||||
alpha = 1
|
||||
beta = 0.1
|
||||
|
||||
with torch.no_grad():
|
||||
for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'):
|
||||
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
|
||||
|
||||
outputs, re_img = model(inputs)
|
||||
|
||||
# 将 logits 转换为预测
|
||||
predicted = torch.sigmoid(outputs).data
|
||||
all_preds.extend(predicted.cpu().numpy())
|
||||
all_labels.extend(labels.cpu().numpy())
|
||||
|
||||
# loss = criterion(outputs.squeeze(), labels.float())
|
||||
loss = criterion(outputs.squeeze(), labels.float())
|
||||
loss_F1 = F.l1_loss(re_img, inputs)
|
||||
loss = alpha * loss + beta * loss_F1
|
||||
running_loss += loss.item()
|
||||
|
||||
auc = roc_auc_score(all_labels, all_preds)
|
||||
predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组
|
||||
acc = accuracy_score(all_labels, predicted_labels)
|
||||
avg_loss = running_loss / len(loader)
|
||||
print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}')
|
||||
return avg_loss, acc, auc
|
||||
|
||||
|
||||
def test_deepmodel(device, model, loader):
|
||||
model.eval()
|
||||
all_labels, all_preds = [], []
|
||||
|
||||
with torch.no_grad():
|
||||
for inputs, labels in tqdm(loader, desc=f'Testing', unit='batch'):
|
||||
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
|
||||
outputs, re_img = model(inputs)
|
||||
predicted = torch.sigmoid(outputs).data # 将 logits 转换为预测
|
||||
|
||||
# 收集预测值和真实标签
|
||||
all_preds.extend(predicted.cpu().numpy())
|
||||
all_labels.extend(labels.cpu().numpy())
|
||||
|
||||
# 将预测值转换为二值标签
|
||||
predicted_labels = (np.array(all_preds) >= 0.5).astype(int)
|
||||
|
||||
# 计算准确率和AUC
|
||||
acc = accuracy_score(all_labels, predicted_labels)
|
||||
auc = roc_auc_score(all_labels, all_preds)
|
||||
|
||||
print(f'Test Accuracy: {acc:.4f}, Test AUC: {auc:.4f}')
|
||||
return acc, auc
|
||||
|
||||
|
||||
# def train_model(device, model, loader, optimizer, criterion, epoch, model_name):
|
||||
# model.train()
|
||||
# running_loss = 0.0
|
||||
# for i, (inputs, labels) in enumerate(tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch')):
|
||||
# inputs, labels = inputs.float().to(device), labels.float().to(device) # 确保数据格式正确
|
||||
# optimizer.zero_grad()
|
||||
#
|
||||
# outputs = model(inputs)
|
||||
# loss = criterion(outputs.squeeze(), labels)
|
||||
#
|
||||
# # 随机打印部分输出和标签,检查格式
|
||||
# if i % 10 == 0: # 每100个批次打印一次
|
||||
# print(f"Batch {i} - Sample Output: {outputs[0].item():.4f}, Sample Label: {labels[0].item()}")
|
||||
#
|
||||
# # 检查损失值是否异常
|
||||
# if loss.item() < 0:
|
||||
# print(f"Warning: Negative loss detected at batch {i}. Loss: {loss.item()}")
|
||||
#
|
||||
# loss.backward()
|
||||
# optimizer.step()
|
||||
#
|
||||
# running_loss += loss.item()
|
||||
#
|
||||
# avg_loss = running_loss / len(loader)
|
||||
# print(f'{model_name} Training Loss: {avg_loss:.4f}')
|
||||
# return avg_loss
|
||||
|
||||
def train_model(device, model, loader, optimizer, criterion, epoch, model_name):
|
||||
model.train()
|
||||
running_loss = 0.0
|
||||
for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'):
|
||||
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs.squeeze(), labels.float())
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
|
||||
avg_loss = running_loss / len(loader)
|
||||
print(f'{model_name} Training Loss: {avg_loss:.4f}')
|
||||
return avg_loss
|
||||
|
||||
|
||||
def validate_model(device, model, loader, criterion, epoch, model_name):
|
||||
model.eval()
|
||||
running_loss = 0.0
|
||||
correct, total = 0, 0
|
||||
all_labels, all_preds = [], []
|
||||
|
||||
with torch.no_grad():
|
||||
for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'):
|
||||
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
|
||||
|
||||
outputs = model(inputs)
|
||||
|
||||
# 将 logits 转换为预测
|
||||
predicted = torch.sigmoid(outputs).data
|
||||
all_preds.extend(predicted.cpu().numpy())
|
||||
all_labels.extend(labels.cpu().numpy())
|
||||
|
||||
# loss = criterion(outputs.squeeze(), labels.float())
|
||||
loss = criterion(outputs.squeeze(), labels.float())
|
||||
running_loss += loss.item()
|
||||
auc = roc_auc_score(all_labels, all_preds)
|
||||
predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组
|
||||
acc = accuracy_score(all_labels, predicted_labels)
|
||||
avg_loss = running_loss / len(loader)
|
||||
print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}')
|
||||
return avg_loss, acc, auc
|
||||
|
||||
|
||||
# 权重聚合函数
|
||||
def aggregate_weights(weights_list, alpha=1 / 3, beta=1 / 3, gamma=1 / 3):
|
||||
new_state_dict = copy.deepcopy(weights_list[0]) # 从模型a复制权重结构
|
||||
for key in new_state_dict.keys():
|
||||
new_state_dict[key] = (alpha * weights_list[0][key] +
|
||||
beta * weights_list[1][key] +
|
||||
gamma * weights_list[2][key])
|
||||
return new_state_dict
|
||||
|
||||
|
||||
def v3_update_model_weights(
|
||||
epoch,
|
||||
model_to_update,
|
||||
other_models,
|
||||
global_model,
|
||||
losses,
|
||||
val_loader,
|
||||
device,
|
||||
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
|
||||
validate_model,
|
||||
criterion,
|
||||
update_frequency
|
||||
):
|
||||
"""
|
||||
根据给定的条件更新模型的权重。
|
||||
|
||||
参数:
|
||||
epoch (int): 当前训练轮次。
|
||||
model_to_update: 需要更新的模型。
|
||||
other_models (list): 其他模型列表,用于计算全局模型权重。
|
||||
global_model: 全局模型。
|
||||
losses (list): 各模型的损失值列表。
|
||||
val_loader: 验证数据的 DataLoader。
|
||||
device: 设备 ('cuda' 或 'cpu')。
|
||||
val_auc_threshold (float): 当前需要更新模型的验证 AUC。
|
||||
aggregate_weights (function): 权重聚合函数。
|
||||
validate_model (function): 验证模型的函数。
|
||||
update_frequency (int): 权重更新的频率。
|
||||
|
||||
返回:
|
||||
val_acc (float): 全局模型的验证精度。
|
||||
val_auc (float): 全局模型的验证 AUC。
|
||||
updated_val_auc_threshold (float): 更新后的验证 AUC。
|
||||
"""
|
||||
if (epoch + 1) % update_frequency == 0:
|
||||
# 获取所有模型的权重
|
||||
all_weights = [model.state_dict() for model in other_models]
|
||||
avg_weights = aggregate_weights(all_weights) # 聚合权重
|
||||
|
||||
# 更新全局模型权重
|
||||
global_model.load_state_dict(avg_weights)
|
||||
|
||||
# 计算加权平均损失
|
||||
weighted_loss = sum(loss * 0.33 for loss in losses)
|
||||
print(f"Weighted Average Loss: {weighted_loss:.4f}")
|
||||
|
||||
# 验证全局模型
|
||||
val_loss, val_acc, val_auc = validate_model(device, global_model, val_loader, criterion, epoch, 'global_model')
|
||||
print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}')
|
||||
|
||||
# 如果全局模型的 AUC 更高,则更新目标模型
|
||||
if val_auc > val_auc_threshold:
|
||||
print(f'Updating model at epoch {epoch + 1}')
|
||||
model_to_update.load_state_dict(global_model.state_dict())
|
||||
val_auc_threshold = val_auc # 更新 AUC 阈值
|
||||
|
||||
return val_acc, val_auc, val_auc_threshold
|
||||
return None, None, val_auc_threshold
|
||||
|
||||
|
||||
def update_model_weights(
|
||||
epoch,
|
||||
model_to_update,
|
||||
other_models,
|
||||
global_model,
|
||||
losses,
|
||||
val_loader,
|
||||
device,
|
||||
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
|
||||
validate_model,
|
||||
criterion,
|
||||
update_frequency
|
||||
):
|
||||
"""
|
||||
根据给定的条件更新模型的权重。
|
||||
|
||||
参数:
|
||||
epoch (int): 当前训练轮次。
|
||||
model_to_update: 需要更新的模型。
|
||||
other_models (list): 其他模型列表,用于计算全局模型权重。
|
||||
global_model: 全局模型。
|
||||
losses (list): 各模型的损失值列表。
|
||||
val_loader: 验证数据的 DataLoader。
|
||||
device: 设备 ('cuda' 或 'cpu')。
|
||||
val_auc_threshold (float): 当前需要更新模型的验证 AUC。
|
||||
aggregate_weights (function): 权重聚合函数。
|
||||
validate_model (function): 验证模型的函数。
|
||||
update_frequency (int): 权重更新的频率。
|
||||
|
||||
返回:
|
||||
val_acc (float): 全局模型的验证精度。
|
||||
val_auc (float): 全局模型的验证 AUC。
|
||||
updated_val_auc_threshold (float): 更新后的验证 AUC。
|
||||
"""
|
||||
if (epoch + 1) % update_frequency == 0:
|
||||
# 获取所有模型的权重
|
||||
all_weights = [model.state_dict() for model in other_models]
|
||||
avg_weights = aggregate_weights(all_weights) # 聚合权重
|
||||
|
||||
# 更新全局模型权重
|
||||
global_model.load_state_dict(avg_weights)
|
||||
|
||||
# 计算加权平均损失
|
||||
weighted_loss = sum(loss * 0.33 for loss in losses)
|
||||
print(f"Weighted Average Loss: {weighted_loss:.4f}")
|
||||
|
||||
# 验证全局模型
|
||||
val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch,
|
||||
'global_model')
|
||||
print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}')
|
||||
|
||||
# 如果全局模型的 AUC 更高,则更新目标模型
|
||||
if val_auc > val_auc_threshold:
|
||||
print(f'Updating model at epoch {epoch + 1}')
|
||||
model_to_update.load_state_dict(global_model.state_dict())
|
||||
val_auc_threshold = val_auc # 更新 AUC 阈值
|
||||
|
||||
return val_acc, val_auc, val_auc_threshold
|
||||
return None, None, val_auc_threshold
|
||||
|
||||
|
||||
def f_update_model_weights(
|
||||
epoch,
|
||||
model_to_update,
|
||||
other_models,
|
||||
global_model,
|
||||
losses,
|
||||
val_loader,
|
||||
device,
|
||||
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
|
||||
aggregate_weights, # 权重聚合函数
|
||||
validate_model,
|
||||
criterion,
|
||||
update_frequency
|
||||
):
|
||||
"""
|
||||
根据给定的条件更新模型的权重。
|
||||
|
||||
参数:
|
||||
epoch (int): 当前训练轮次。
|
||||
model_to_update: 需要更新的模型。
|
||||
other_models (list): 其他模型列表,用于计算全局模型权重。
|
||||
global_model: 全局模型。
|
||||
losses (list): 各模型的损失值列表。
|
||||
val_loader: 验证数据的 DataLoader。
|
||||
device: 设备 ('cuda' 或 'cpu')。
|
||||
val_auc_threshold (float): 当前需要更新模型的验证 AUC 阈值。
|
||||
aggregate_weights (function): 权重聚合函数。
|
||||
validate_model (function): 验证模型的函数。
|
||||
criterion: 损失函数。
|
||||
update_frequency (int): 权重更新的频率。
|
||||
|
||||
返回:
|
||||
val_acc (float): 全局模型的验证精度。
|
||||
val_auc (float): 全局模型的验证 AUC。
|
||||
updated_val_auc_threshold (float): 更新后的验证 AUC 阈值。
|
||||
"""
|
||||
# 每隔指定的 epoch 更新一次模型权重
|
||||
|
||||
if (epoch + 1) % update_frequency == 0:
|
||||
print(f"\n[Epoch {epoch + 1}] Updating global model weights...")
|
||||
|
||||
# 获取其他模型的权重
|
||||
all_weights = [model.state_dict() for model in other_models]
|
||||
|
||||
# 使用聚合函数计算全局权重
|
||||
avg_weights = aggregate_weights(all_weights)
|
||||
print("Global model weights aggregated.")
|
||||
|
||||
# 更新全局模型权重
|
||||
global_model.load_state_dict(avg_weights)
|
||||
|
||||
# 计算加权平均损失
|
||||
weighted_loss = sum(loss * (1 / len(losses)) for loss in losses) # 平均加权
|
||||
print(f"Weighted Average Loss: {weighted_loss:.4f}")
|
||||
|
||||
# 验证全局模型性能
|
||||
val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch,
|
||||
'global_model')
|
||||
print(f"[Global Model] Validation Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}, AUC: {val_auc:.4f}")
|
||||
|
||||
# 如果全局模型 AUC 高于阈值,则更新目标模型权重
|
||||
if val_auc > val_auc_threshold:
|
||||
print(f"Global model AUC improved ({val_auc:.4f} > {val_auc_threshold:.4f}). Updating target model.")
|
||||
model_to_update.load_state_dict(global_model.state_dict())
|
||||
val_auc_threshold = val_auc # 更新 AUC 阈值
|
||||
else:
|
||||
print(
|
||||
f"Global model AUC did not improve ({val_auc:.4f} <= {val_auc_threshold:.4f}). No update to target model.")
|
||||
|
||||
return val_acc, val_auc, val_auc_threshold
|
||||
|
||||
# 如果未到达更新频率,返回当前的 AUC 阈值
|
||||
return None, None, val_auc_threshold
|
Reference in New Issue
Block a user