增加联邦学习评价指标。bugfix: 修复训练模型参数聚合问题

This commit is contained in:
Yunhao Meng 2025-05-10 17:22:56 +08:00
parent 98321aa7d5
commit 76240a12e6

View File

@ -2,6 +2,8 @@ import glob
import os
from pathlib import Path
import json
from pydoc import cli
from threading import local
import yaml
from ultralytics import YOLO
@ -17,66 +19,83 @@ def federated_avg(global_model, client_weights):
if total_samples == 0:
raise ValueError("Total number of samples must be positive.")
# DEBUG: global_dict
# print(global_model)
# 获取YOLO底层PyTorch模型参数
global_dict = global_model.model.state_dict()
# 提取所有客户端的 state_dict 和对应样本数
state_dicts, sample_counts = zip(*client_weights)
for key in global_dict:
# 对每一层参数取平均
# if global_dict[key].data.dtype == torch.float32:
# global_dict[key].data = torch.stack(
# [w[key].float() for w in client_weights], 0
# ).mean(0)
# 克隆参数并脱离计算图
global_dict_copy = {
k: v.clone().detach().requires_grad_(False) for k, v in global_dict.items()
}
# 加权平均
if global_dict[key].dtype == torch.float32: # 只聚合浮点型参数
# 跳过 BatchNorm 层的统计量
if any(
x in key for x in ["running_mean", "running_var", "num_batches_tracked"]
):
continue
# 按照样本数加权求和
weighted_tensors = [
sd[key].float() * (n / total_samples)
for sd, n in zip(state_dicts, sample_counts)
]
global_dict[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
# 聚合可训练且存在的参数
for key in global_dict_copy:
# if global_dict_copy[key].dtype != torch.float32:
# continue
# if any(
# x in key for x in ["running_mean", "running_var", "num_batches_tracked"]
# ):
# continue
# 检查所有客户端是否包含当前键
all_clients_have_key = all(key in sd for sd in state_dicts)
if all_clients_have_key:
# 计算每个客户端的加权张量
# weighted_tensors = [
# client_state[key].float() * (sample_count / total_samples)
# for client_state, sample_count in zip(state_dicts, sample_counts)
# ]
weighted_tensors = []
for client_state, sample_count in zip(state_dicts, sample_counts):
weight = sample_count / total_samples # 计算权重
weighted_tensor = client_state[key].float() * weight # 加权张量
weighted_tensors.append(weighted_tensor)
# 聚合加权张量并更新全局参数
global_dict_copy[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
# 解决模型参数不匹配问题
# try:
# # 加载回YOLO模型
# global_model.model.load_state_dict(global_dict)
# except RuntimeError as e:
# print('Ignoring "' + str(e) + '"')
# else:
# print(f"错误: 键 {key} 在部分客户端缺失,已保留全局参数")
# 终止训练或记录日志
# raise KeyError(f"键 {key} 缺失")
# 加载回YOLO模型
global_model.model.load_state_dict(global_dict)
# 加载回YOLO模型
global_model.model.load_state_dict(global_dict_copy, strict=True)
# 随机选取一个非统计量层进行对比
# sample_key = next(k for k in global_dict if 'running_' not in k)
# aggregated_mean = global_dict[sample_key].mean().item()
# client_means = [sd[sample_key].float().mean().item() for sd in state_dicts]
# print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}")
# print(f"The average value of the layer for each client: {client_means}")
# global_model.model.train()
# with torch.no_grad():
# global_model.model.load_state_dict(global_dict_copy, strict=True)
# 定义多个关键层
MONITOR_KEYS = [
"model.0.conv.weight", # 输入层卷积
"model.10.conv.weight", # 中间层卷积
"model.22.dfl.conv.weight", # 输出层分类头
"model.0.conv.weight",
"model.1.conv.weight",
"model.3.conv.weight",
"model.5.conv.weight",
"model.7.conv.weight",
"model.9.cv1.conv.weight",
"model.12.cv1.conv.weight",
"model.15.cv1.conv.weight",
"model.18.cv1.conv.weight",
"model.21.cv1.conv.weight",
"model.22.dfl.conv.weight",
]
with open("aggregation_check.txt", "a") as f:
f.write("\n=== 参数聚合检查 ===\n")
for key in MONITOR_KEYS:
if key not in global_dict:
continue
# if key not in global_dict:
# continue
# if not all(key in sd for sd in state_dicts):
# continue
# 计算聚合后均值
aggregated_mean = global_dict[key].mean().item()
# 计算各客户端均值
client_means = [sd[key].float().mean().item() for sd in state_dicts]
with open("aggregation_check.txt", "a") as f:
f.write(f"'{key}' 聚合后均值: {aggregated_mean:.6f}\n")
f.write(f"各客户端该层均值差异: {[f'{cm:.6f}' for cm in client_means]}\n")
@ -87,24 +106,35 @@ def federated_avg(global_model, client_weights):
# ------------ 修改训练流程 ------------
def federated_train(num_rounds, clients_data):
# ========== 新增:初始化指标记录 ==========
# ========== 初始化指标记录 ==========
metrics = {
"round": [],
"val_mAP": [], # 每轮验证集mAP
"train_loss": [], # 每轮平均训练损失
# "train_loss": [], # 每轮平均训练损失
"client_mAPs": [], # 各客户端本地模型在验证集上的mAP
"communication_cost": [], # 每轮通信开销MB
}
# 初始化全局模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
global_model = YOLO("../yolov8n.yaml").to(device)
# 设置类别数
# global_model.model.nc = 1
global_model = (
YOLO("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.yaml")
.load("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.pt")
.to(device)
)
global_model.model.model[-1].nc = 1 # 设置检测类别数为1
# global_model.model.train.ema.enabled = False
# 克隆全局模型
local_model = copy.deepcopy(global_model)
for _ in range(num_rounds):
client_weights = []
client_losses = [] # 记录各客户端的训练损失
# 各客户端的训练损失
# client_losses = []
# DEBUG: 检查全局模型参数
# global_dict = global_model.model.state_dict()
# print(global_dict.keys())
# 每个客户端本地训练
for data_path in clients_data:
@ -118,23 +148,28 @@ def federated_train(num_rounds, clients_data):
) # 从配置文件中获取图像目录
# print(f"Image directory: {img_dir}")
num_samples = (len(glob.glob(os.path.join(img_dir, "*.jpg")))
num_samples = (
len(glob.glob(os.path.join(img_dir, "*.jpg")))
+ len(glob.glob(os.path.join(img_dir, "*.png")))
+ len(glob.glob(os.path.join(img_dir, "*.jpeg")))
)
# print(f"Number of images: {num_samples}")
# 克隆全局模型
local_model = copy.deepcopy(global_model)
local_model.model.load_state_dict(
global_model.model.state_dict(), strict=True
)
# 本地训练(保持你的原有参数设置)
results = local_model.train(
local_model.train(
name=f"train{_ + 1}", # 当前轮次
data=data_path,
epochs=4, # 每轮本地训练多少个epoch
# model=local_model,
epochs=16, # 每轮本地训练多少个epoch
# save_period=16,
imgsz=640, # 图像大小
imgsz=768, # 图像大小
verbose=False, # 关闭冗余输出
batch=-1,
batch=-1, # 批大小
workers=6, # 工作线程数
)
# 记录客户端训练损失
@ -142,21 +177,32 @@ def federated_train(num_rounds, clients_data):
# client_losses.append(client_loss)
# 收集模型参数及样本数
client_weights.append(
(copy.deepcopy(local_model.model.state_dict()), num_samples)
)
client_weights.append((local_model.model.state_dict(), num_samples))
# 聚合参数更新全局模型
global_model = federated_avg(global_model, client_weights)
# DEBUG: 检查全局模型参数
# keys = global_model.model.state_dict().keys()
# ========== 评估全局模型 ==========
# 复制全局模型以避免在评估时修改参数
val_model = copy.deepcopy(global_model)
# 评估全局模型在验证集上的性能
val_results = global_model.val(
data="/mnt/DATA/UAVdataset/data.yaml", # 指定验证集配置文件
imgsz=640,
batch=-1,
verbose=False,
)
with torch.no_grad():
val_results = val_model.val(
data="/mnt/DATA/uav_dataset_old/UAVdataset/fed_data.yaml", # 指定验证集配置文件
imgsz=768, # 图像大小
batch=16, # 批大小
verbose=False, # 关闭冗余输出
)
# 丢弃评估模型
del val_model
# DEBUG: 检查全局模型参数
# if keys != global_model.model.state_dict().keys():
# print("模型参数不一致!")
val_mAP = val_results.box.map # 获取mAP@0.5
# 计算平均训练损失
@ -174,24 +220,29 @@ def federated_train(num_rounds, clients_data):
metrics["communication_cost"].append(model_size)
# 打印当前轮次结果
with open("aggregation_check.txt", "a") as f:
f.write(f"\n[Round {_ + 1}/{num_rounds}]")
f.write(f"Validation mAP@0.5: {val_mAP:.4f}")
f.write(f"\n[Round {_ + 1}/{num_rounds}]\n")
f.write(f"Validation mAP@0.5: {val_mAP:.4f}\n")
# f.write(f"Average Train Loss: {avg_train_loss:.4f}")
f.write(f"Communication Cost: {model_size:.2f} MB\n")
f.write(f"Communication Cost: {model_size:.2f} MB\n\n")
return global_model, metrics
# ------------ 使用示例 ------------
if __name__ == "__main__":
# 联邦训练配置
clients_config = [
"/mnt/DATA/uav_dataset_fed/train1/train1.yaml", # 客户端1数据路径
"/mnt/DATA/uav_dataset_fed/train2/train2.yaml", # 客户端2数据路径
"/mnt/DATA/uav_fed/train1/train1.yaml", # 客户端1数据路径
"/mnt/DATA/uav_fed/train2/train2.yaml", # 客户端2数据路径
]
# 使用本地数据集进行测试
# clients_config = [
# "/home/image1325/DATA/Graduation-Project/dataset/train1/train1.yaml",
# "/home/image1325/DATA/Graduation-Project/dataset/train2/train2.yaml",
# ]
# 运行联邦训练
final_model, metrics = federated_train(num_rounds=40, clients_data=clients_config)
final_model, metrics = federated_train(num_rounds=10, clients_data=clients_config)
# 保存最终模型
final_model.save("yolov8n_federated.pt")