Compare commits

...

2 Commits

Author SHA1 Message Date
f127ae2852 增加联邦学习指标;fix:Pytorch 加载模型不匹配 2025-05-07 10:41:36 +08:00
3a65d89315 ignore .vscode 2025-05-07 10:41:06 +08:00
3 changed files with 177 additions and 60 deletions

2
.gitignore vendored
View File

@ -302,3 +302,5 @@ Temporary Items
runs/
*.pt
*.cache
.vscode/
*.json

View File

@ -1,6 +1,7 @@
import glob
import os
from pathlib import Path
import json
import yaml
from ultralytics import YOLO
@ -15,121 +16,186 @@ def federated_avg(global_model, client_weights):
total_samples = sum(n for _, n in client_weights)
if total_samples == 0:
raise ValueError("Total number of samples must be positive.")
# 获取YOLO底层PyTorch模型参数
global_dict = global_model.model.state_dict()
# 提取所有客户端的 state_dict 和对应样本数
state_dicts, sample_counts = zip(*client_weights)
for key in global_dict:
# 对每一层参数取平均
# if global_dict[key].data.dtype == torch.float32:
# global_dict[key].data = torch.stack(
# [w[key].float() for w in client_weights], 0
# ).mean(0)
# 加权平均
if global_dict[key].dtype == torch.float32: # 只聚合浮点型参数
# 跳过 BatchNorm 层的统计量
if any(x in key for x in ['running_mean', 'running_var', 'num_batches_tracked']):
if any(
x in key for x in ["running_mean", "running_var", "num_batches_tracked"]
):
continue
# 按照样本数加权求和
weighted_tensors = [sd[key].float() * (n / total_samples)
for sd, n in zip(state_dicts, sample_counts)]
weighted_tensors = [
sd[key].float() * (n / total_samples)
for sd, n in zip(state_dicts, sample_counts)
]
global_dict[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
# 解决模型参数不匹配问题
try:
# 解决模型参数不匹配问题
# try:
# # 加载回YOLO模型
# global_model.model.load_state_dict(global_dict)
# except RuntimeError as e:
# print('Ignoring "' + str(e) + '"')
# 加载回YOLO模型
global_model.model.load_state_dict(global_dict)
except RuntimeError as e:
print('Ignoring "' + str(e) + '"')
# 添加调试输出
print("\n=== 参数聚合检查 ===")
# 选取一个典型参数层
# sample_key = list(global_dict.keys())[10]
# original = global_dict[sample_key].data.mean().item()
# aggregated = torch.stack([w[sample_key] for w in client_weights]).mean().item()
# print(f"参数层 '{sample_key}' 变化: {original:.4f} → {aggregated:.4f}")
# print(f"客户端参数差异: {[w[sample_key].mean().item() for w in client_weights]}")
# 随机选取一个非统计量层进行对比
sample_key = next(k for k in global_dict if 'running_' not in k)
aggregated_mean = global_dict[sample_key].mean().item()
client_means = [sd[sample_key].float().mean().item() for sd in state_dicts]
print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}")
print(f"The average value of the layer for each client: {client_means}")
# sample_key = next(k for k in global_dict if 'running_' not in k)
# aggregated_mean = global_dict[sample_key].mean().item()
# client_means = [sd[sample_key].float().mean().item() for sd in state_dicts]
# print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}")
# print(f"The average value of the layer for each client: {client_means}")
# 定义多个关键层
MONITOR_KEYS = [
"model.0.conv.weight", # 输入层卷积
"model.10.conv.weight", # 中间层卷积
"model.22.dfl.conv.weight", # 输出层分类头
]
with open("aggregation_check.txt", "a") as f:
f.write("\n=== 参数聚合检查 ===\n")
for key in MONITOR_KEYS:
if key not in global_dict:
continue
# 计算聚合后均值
aggregated_mean = global_dict[key].mean().item()
# 计算各客户端均值
client_means = [sd[key].float().mean().item() for sd in state_dicts]
with open("aggregation_check.txt", "a") as f:
f.write(f"'{key}' 聚合后均值: {aggregated_mean:.6f}\n")
f.write(f"各客户端该层均值差异: {[f'{cm:.6f}' for cm in client_means]}\n")
f.write(f"客户端最大差异: {max(client_means) - min(client_means):.6f}\n\n")
return global_model
# ------------ 修改训练流程 ------------
def federated_train(num_rounds, clients_data):
# ========== 新增:初始化指标记录 ==========
metrics = {
"round": [],
"val_mAP": [], # 每轮验证集mAP
"train_loss": [], # 每轮平均训练损失
"client_mAPs": [], # 各客户端本地模型在验证集上的mAP
"communication_cost": [], # 每轮通信开销MB
}
# 初始化全局模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
global_model = YOLO("../yolov8n.pt").to(device)
global_model = YOLO("../yolov8n.yaml").to(device)
# 设置类别数
global_model.model.nc = 1
# global_model.model.nc = 1
for _ in range(num_rounds):
client_weights = []
client_losses = [] # 记录各客户端的训练损失
# 每个客户端本地训练
for data_path in clients_data:
# 统计本地训练样本数
with open(data_path, 'r') as f:
with open(data_path, "r") as f:
config = yaml.safe_load(f)
# Resolve img_dir relative to the YAML file's location
yaml_dir = os.path.dirname(data_path)
img_dir = os.path.join(yaml_dir, config.get('train', data_path)) # 从配置文件中获取图像目录
img_dir = os.path.join(
yaml_dir, config.get("train", data_path)
) # 从配置文件中获取图像目录
# print(f"Image directory: {img_dir}")
num_samples = (len(glob.glob(os.path.join(img_dir, '*.jpg'))) +
len(glob.glob(os.path.join(img_dir, '*.png'))))
num_samples = (len(glob.glob(os.path.join(img_dir, "*.jpg")))
+ len(glob.glob(os.path.join(img_dir, "*.png")))
+ len(glob.glob(os.path.join(img_dir, "*.jpeg")))
)
# print(f"Number of images: {num_samples}")
# 克隆全局模型
local_model = copy.deepcopy(global_model)
# 本地训练(保持你的原有参数设置)
local_model.train(
results = local_model.train(
data=data_path,
epochs=16, # 每轮本地训练1个epoch
save_period=16,
epochs=4, # 每轮本地训练多少个epoch
# save_period=16,
imgsz=640, # 图像大小
verbose=False, # 关闭冗余输出
batch=-1
batch=-1,
)
# 记录客户端训练损失
# client_loss = results.results_dict['train_loss']
# client_losses.append(client_loss)
# 收集模型参数及样本数
client_weights.append((copy.deepcopy(local_model.model.state_dict()), num_samples))
client_weights.append(
(copy.deepcopy(local_model.model.state_dict()), num_samples)
)
# 聚合参数更新全局模型
global_model = federated_avg(global_model, client_weights)
print(f"Round {_ + 1}/{num_rounds} completed.")
return global_model
# ========== 评估全局模型 ==========
# 评估全局模型在验证集上的性能
val_results = global_model.val(
data="/mnt/DATA/UAVdataset/data.yaml", # 指定验证集配置文件
imgsz=640,
batch=-1,
verbose=False,
)
val_mAP = val_results.box.map # 获取mAP@0.5
# 计算平均训练损失
# avg_train_loss = sum(client_losses) / len(client_losses)
# 计算通信开销(假设传输全部模型参数)
model_size = sum(p.numel() * 4 for p in global_model.model.parameters()) / (
1024**2
) # MB
# 记录到指标容器
metrics["round"].append(_ + 1)
metrics["val_mAP"].append(val_mAP)
# metrics['train_loss'].append(avg_train_loss)
metrics["communication_cost"].append(model_size)
# 打印当前轮次结果
with open("aggregation_check.txt", "a") as f:
f.write(f"\n[Round {_ + 1}/{num_rounds}]")
f.write(f"Validation mAP@0.5: {val_mAP:.4f}")
# f.write(f"Average Train Loss: {avg_train_loss:.4f}")
f.write(f"Communication Cost: {model_size:.2f} MB\n")
return global_model, metrics
# ------------ 使用示例 ------------
if __name__ == "__main__":
# 联邦训练配置
clients_config = [
"/root/autodl-tmp/dataset/train1/train1.yaml", # 客户端1数据路径
"/root/autodl-tmp/dataset/train2/train2.yaml" # 客户端2数据路径
"/mnt/DATA/uav_dataset_fed/train1/train1.yaml", # 客户端1数据路径
"/mnt/DATA/uav_dataset_fed/train2/train2.yaml", # 客户端2数据路径
]
# 运行联邦训练
final_model = federated_train(num_rounds=10, clients_data=clients_config)
final_model, metrics = federated_train(num_rounds=40, clients_data=clients_config)
# 保存最终模型
final_model.save("yolov8n_federated.pt")
# final_model.export(format="onnx") # 导出为ONNX格式
# 检查1确认模型保存
# assert Path("yolov8n_federated.onnx").exists(), "模型导出失败"
# 检查2验证预测功能
# results = final_model.predict("../dataset/val/images/VS_P65.jpg", save=True)
# assert len(results[0].boxes) > 0, "预测结果异常"
with open("metrics.json", "w") as f:
json.dump(metrics, f, indent=4)

49
yolov8.yaml Normal file
View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 129 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPS
s: [0.33, 0.50, 1024] # YOLOv8s summary: 129 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPS
m: [0.67, 0.75, 768] # YOLOv8m summary: 169 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPS
l: [1.00, 1.00, 512] # YOLOv8l summary: 209 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPS
x: [1.00, 1.25, 512] # YOLOv8x summary: 209 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPS
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)