修改聚合逻辑,每次聚合不再创建新模型
This commit is contained in:
@@ -121,40 +121,53 @@ class FedYoloServer(object):
|
|||||||
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
|
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
|
||||||
|
|
||||||
def select_clients(self, connection_ratio=1.0):
|
def select_clients(self, connection_ratio=1.0):
|
||||||
"""Randomly select a fraction of clients."""
|
"""
|
||||||
|
Randomly select a fraction of clients.
|
||||||
|
Args:
|
||||||
|
connection_ratio: fraction of clients to select (0 < connection_ratio <= 1)
|
||||||
|
"""
|
||||||
self.selected_clients = []
|
self.selected_clients = []
|
||||||
self.n_data = 0
|
self.n_data = 0
|
||||||
for client_id in self.client_list:
|
for client_id in self.client_list:
|
||||||
|
# Random selection based on connection ratio
|
||||||
if np.random.rand() <= connection_ratio:
|
if np.random.rand() <= connection_ratio:
|
||||||
self.selected_clients.append(client_id)
|
self.selected_clients.append(client_id)
|
||||||
self.n_data += self.client_n_data.get(client_id, 0)
|
self.n_data += self.client_n_data.get(client_id, 0)
|
||||||
|
|
||||||
def agg(self):
|
def agg(self):
|
||||||
"""Aggregate client updates (FedAvg)."""
|
"""
|
||||||
|
Aggregate client updates (FedAvg).
|
||||||
|
Returns:
|
||||||
|
global_state: aggregated model state dictionary
|
||||||
|
avg_loss: dict of averaged losses
|
||||||
|
n_data: total number of data classes samples used in this round
|
||||||
|
"""
|
||||||
if len(self.selected_clients) == 0 or self.n_data == 0:
|
if len(self.selected_clients) == 0 or self.n_data == 0:
|
||||||
return self.model.state_dict(), {}, 0
|
return self.model.state_dict(), {}, 0
|
||||||
|
|
||||||
model = init_model(self.model_name, self._num_classes)
|
# start from current global model
|
||||||
model_state = model.state_dict()
|
global_state = self.model.state_dict()
|
||||||
|
|
||||||
|
# zero buffer for accumulation
|
||||||
|
new_state = {k: torch.zeros_like(v, dtype=torch.float32) for k, v in global_state.items()}
|
||||||
|
|
||||||
avg_loss = {}
|
avg_loss = {}
|
||||||
for i, name in enumerate(self.selected_clients):
|
for name in self.selected_clients:
|
||||||
if name not in self.client_state:
|
if name not in self.client_state:
|
||||||
continue
|
continue
|
||||||
weight = self.client_n_data[name] / self.n_data
|
weight = self.client_n_data[name] / self.n_data
|
||||||
for key in model_state.keys():
|
for k in new_state.keys():
|
||||||
if i == 0:
|
# accumulate in float32 to avoid fp16 issues
|
||||||
model_state[key] = self.client_state[name][key] * weight
|
new_state[k] += self.client_state[name][k].to(torch.float32) * weight
|
||||||
else:
|
|
||||||
model_state[key] += self.client_state[name][key] * weight
|
|
||||||
|
|
||||||
# Weighted average losses
|
# losses
|
||||||
for k, v in self.client_loss[name].items():
|
for k, v in self.client_loss[name].items():
|
||||||
avg_loss[k] = avg_loss.get(k, 0.0) + v * weight
|
avg_loss[k] = avg_loss.get(k, 0.0) + v * weight
|
||||||
|
|
||||||
self.model.load_state_dict(model_state, strict=True)
|
# load aggregated params back into global model
|
||||||
|
self.model.load_state_dict(new_state, strict=True)
|
||||||
self.round += 1
|
self.round += 1
|
||||||
return model_state, avg_loss, self.n_data
|
return self.model.state_dict(), avg_loss, self.n_data
|
||||||
|
|
||||||
def rec(self, name, state_dict, n_data, loss_dict):
|
def rec(self, name, state_dict, n_data, loss_dict):
|
||||||
"""
|
"""
|
||||||
|
Reference in New Issue
Block a user