优化文档字符串,明确参数说明
This commit is contained in:
@@ -11,13 +11,13 @@ class FedYoloServer(object):
|
||||
def __init__(self, client_list, model_name, params):
|
||||
"""
|
||||
Federated YOLO Server
|
||||
Args:
|
||||
Attributes:
|
||||
client_list: list of connected clients
|
||||
model_name: YOLO model architecture name
|
||||
params: dict of hyperparameters (must include 'names')
|
||||
"""
|
||||
# Track client updates
|
||||
self.client_state = {}
|
||||
self.client_state: dict[str, dict[str, torch.Tensor]] = {}
|
||||
self.client_loss = {}
|
||||
self.client_n_data = {}
|
||||
self.selected_clients = []
|
||||
@@ -64,14 +64,19 @@ class FedYoloServer(object):
|
||||
self.selected_clients.append(client_id)
|
||||
self.n_data += self.client_n_data[client_id]
|
||||
|
||||
# TODO: skip the layer which can not be learnted locally
|
||||
@torch.no_grad()
|
||||
def agg(self):
|
||||
def agg(self, skip_bn_layer: bool = False):
|
||||
"""
|
||||
Server aggregates the local updates from selected clients using FedAvg.
|
||||
|
||||
:return: model_state: aggregated model weights
|
||||
:return: avg_loss: weighted average training loss across selected clients
|
||||
:return: n_data: total number of data points across selected clients
|
||||
Args:
|
||||
skip_bn_layer: whether to skip batch normalization layers during aggregation
|
||||
|
||||
Returns:
|
||||
:model_state: aggregated model weights
|
||||
:avg_loss: weighted average training loss across selected clients
|
||||
:n_data: total number of data points across selected clients
|
||||
"""
|
||||
if len(self.selected_clients) == 0 or self.n_data == 0:
|
||||
import warnings
|
||||
@@ -144,11 +149,13 @@ class FedYoloServer(object):
|
||||
def test(valset: Dataset, params, model: YOLO, batch_size: int = 200) -> tuple[float, float, float, float]:
|
||||
"""
|
||||
Evaluate the model on the validation dataset.
|
||||
|
||||
Args:
|
||||
valset: validation dataset
|
||||
params: dict of parameters (must include 'names')
|
||||
model: YOLO model to evaluate
|
||||
batch_size: batch size for evaluation
|
||||
|
||||
Returns:
|
||||
dict with evaluation metrics (tp, fp, m_pre, m_rec, map50, mean_ap)
|
||||
"""
|
||||
@@ -214,7 +221,9 @@ def test(valset: Dataset, params, model: YOLO, batch_size: int = 200) -> tuple[f
|
||||
# Compute metrics
|
||||
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)] # to numpy
|
||||
if len(metrics) and metrics[0].any():
|
||||
tp, fp, m_pre, m_rec, map50, mean_ap = util.compute_ap(*metrics, plot=False, names=params["names"])
|
||||
tp, fp, m_pre, m_rec, map50, mean_ap = util.compute_ap(
|
||||
*metrics, plot=False, names=params["names"]
|
||||
) # set plot=True to plot metric curve
|
||||
# Print results
|
||||
# print(("%10s" + "%10.3g" * 4) % ("", m_pre, m_rec, map50, mean_ap))
|
||||
# Return results
|
||||
|
||||
Reference in New Issue
Block a user