优化FedYoloClient和FedYoloServer类

This commit is contained in:
TY1667
2025-10-19 21:27:19 +08:00
parent 101ffa51eb
commit 40de29591b
2 changed files with 270 additions and 232 deletions

View File

@@ -3,11 +3,11 @@ import torch
from torch import nn
from torch.utils import data
from torch.amp.autocast_mode import autocast
from tqdm import tqdm
from utils.fed_util import init_model
from utils import util
from utils.dataset import Dataset
from typing import cast
from tqdm import tqdm
class FedYoloClient(object):
@@ -82,52 +82,48 @@ class FedYoloClient(object):
# load the global model parameters
self.model.load_state_dict(Global_model_state_dict, strict=True)
def train(self, args):
def train(self, args) -> tuple[dict[str, torch.Tensor], int, float]:
"""
Train the local model
Args:
:param args: Command line arguments
- local_rank: Local rank for distributed training
- world_size: World size for distributed training
- distributed: Whether to use distributed training
- input_size: Input size for the model
Returns:
:return: Local updated model, number of local data points, training loss
Train the local model.
Returns: (state_dict, n_data, avg_loss_per_image)
"""
# ---- Dist init (if any) ----
if args.distributed:
torch.cuda.set_device(device=args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
# print(f"Client {self.name} - distributed training on {world_size} GPUs, local rank: {local_rank}")
# self._device = torch.device("cuda", local_rank)
if args.local_rank == 0:
pass
# if not os.path.exists("weights"):
# os.makedirs("weights")
util.setup_seed()
util.setup_multi_processes()
# model
# init model have been done in __init__()
self.model.to(self._device)
# device = torch.device(f"cuda:{args.local_rank}" if torch.cuda.is_available() else "cpu")
# self.model.to(device)
self.model.cuda()
# show model architecture
# print(self.model)
# Optimizer
accumulate = max(round(64 / (self._batch_size * args.world_size)), 1)
self._weight_decay = self._batch_size * args.world_size * accumulate / 64
# ---- Optimizer / WD scaling & LR warmup/schedule ----
# accumulate = effective grad-accumulation steps to emulate global batch 64
world_size = getattr(args, "world_size", 1)
accumulate = max(round(64 / (self._batch_size * max(world_size, 1))), 1)
# scale weight_decay like YOLO recipes
scaled_wd = self._weight_decay * self._batch_size * max(world_size, 1) * accumulate / 64
optimizer = torch.optim.SGD(
util.set_params(self.model, self._weight_decay),
util.set_params(self.model, scaled_wd),
lr=self._min_lr,
momentum=self._momentum,
nesterov=True,
)
# EMA
# ---- EMA (track the underlying module if DDP) ----
# track_model = self.model.module if is_ddp else self.model
ema = util.EMA(self.model) if args.local_rank == 0 else None
data_set = Dataset(
print(type(self.train_dataset))
# ---- Data ----
dataset = Dataset(
filenames=self.train_dataset,
input_size=args.input_size,
params=self.params,
@@ -136,26 +132,28 @@ class FedYoloClient(object):
if args.distributed:
train_sampler = data.DistributedSampler(
data_set, num_replicas=args.world_size, rank=args.local_rank, shuffle=True
dataset, num_replicas=args.world_size, rank=args.local_rank, shuffle=True
)
else:
train_sampler = None
loader = data.DataLoader(
data_set,
dataset,
batch_size=self._batch_size,
shuffle=train_sampler is None,
shuffle=(train_sampler is None),
sampler=train_sampler,
num_workers=self.num_workers,
pin_memory=True,
collate_fn=Dataset.collate_fn,
drop_last=False,
)
# Scheduler
num_steps = max(1, len(loader))
scheduler = util.LinearLR(args=args, params=self.params, num_steps=num_steps)
# DDP mode
if args.distributed:
# ---- SyncBN + DDP (if any) ----
is_ddp = bool(args.distributed)
if is_ddp:
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model = nn.parallel.DistributedDataParallel(
module=self.model,
@@ -164,102 +162,133 @@ class FedYoloClient(object):
find_unused_parameters=False,
)
amp_scale = torch.amp.grad_scaler.GradScaler(enabled=True)
# ---- AMP + loss ----
scaler = torch.amp.grad_scaler.GradScaler(enabled=True)
# criterion = util.ComputeLoss(
# self.model.module if isinstance(self.model, nn.parallel.DistributedDataParallel) else self.model,
# self.params,
# )
criterion = util.ComputeLoss(self.model, self.params)
# log
# if args.local_rank == 0:
# header = ("%10s" * 5) % ("client", "memory", "box", "cls", "dfl")
# print("\n" + header)
# p_bar = tqdm(total=args.epochs * num_steps, ncols=120)
# p_bar.set_description(f"{self.name:>10}")
# ---- Training ----
for epoch in range(args.epochs):
# (self.model.module if isinstance(self.model, nn.parallel.DistributedDataParallel) else self.model).train()
self.model.train()
# when distributed, set epoch for shuffling
if args.distributed and train_sampler is not None:
if is_ddp and train_sampler is not None:
train_sampler.set_epoch(epoch)
if args.epochs - epoch == 10:
# disable mosaic augmentation in the last 10 epochs
# disable mosaic in the last 10 epochs (if dataset supports it)
if args.epochs - epoch == 10 and hasattr(loader.dataset, "mosaic"):
ds = cast(Dataset, loader.dataset)
ds.mosaic = False
optimizer.zero_grad(set_to_none=True)
avg_box_loss = util.AverageMeter()
avg_cls_loss = util.AverageMeter()
avg_dfl_loss = util.AverageMeter()
loss_box_meter = util.AverageMeter()
loss_cls_meter = util.AverageMeter()
loss_dfl_meter = util.AverageMeter()
# # --- header (once per epoch, YOLO-style) ---
# if args.local_rank == 0:
# header = ("%10s" * 5) % ("client", "memory", "box", "cls", "dfl")
# print("\n" + header)
for i, (images, targets) in enumerate(loader):
print(f"Client {self.name} - Epoch {epoch + 1}/{args.epochs} - Step {i + 1}/{num_steps}")
step = i + epoch * num_steps
# p_bar = enumerate(loader)
# if args.local_rank == 0:
# p_bar = tqdm(p_bar, total=num_steps, ncols=120)
# scheduler per-step (your util.LinearLR expects step)
scheduler.step(step=step, optimizer=optimizer)
for i, (samples, targets) in enumerate(loader):
global_step = i + num_steps * epoch
scheduler.step(step=global_step, optimizer=optimizer)
# images = images.to(device, non_blocking=True).float() / 255.0
images = images.cuda().float() / 255.0
bs = images.size(0)
# total_imgs_seen += bs
samples = samples.cuda(non_blocking=True).float() / 255.0
# targets: keep as your ComputeLoss expects (often CPU lists/tensors).
# Move to GPU here only if your loss requires it.
# Forward
with autocast("cuda", enabled=True):
outputs = self.model(samples)
with autocast(device_type="cuda", enabled=True):
outputs = self.model(images) # DDP wraps forward
box_loss, cls_loss, dfl_loss = criterion(outputs, targets)
# meters (use the *unscaled* values)
bs = samples.size(0)
avg_box_loss.update(box_loss.item(), bs)
avg_cls_loss.update(cls_loss.item(), bs)
avg_dfl_loss.update(dfl_loss.item(), bs)
# total_loss = box_loss + cls_loss + dfl_loss
# Gradient accumulation: normalize by 'accumulate' so LR stays effective
# total_loss = total_loss / accumulate
# scale losses by batch/world if your loss is averaged internally per-sample/device
# box_loss = box_loss * self._batch_size * args.world_size
# cls_loss = cls_loss * self._batch_size * args.world_size
# dfl_loss = dfl_loss * self._batch_size * args.world_size
# IMPORTANT: assume criterion returns **average per image** in the batch.
# Keep logging on the true (unscaled) values:
loss_box_meter.update(box_loss.item(), bs)
loss_cls_meter.update(cls_loss.item(), bs)
loss_dfl_meter.update(dfl_loss.item(), bs)
box_loss *= self._batch_size
cls_loss *= self._batch_size
dfl_loss *= self._batch_size
box_loss *= args.world_size
cls_loss *= args.world_size
dfl_loss *= args.world_size
total_loss = box_loss + cls_loss + dfl_loss
# Backward
amp_scale.scale(total_loss).backward()
scaler.scale(total_loss).backward()
# Optimize
if (i + 1) % accumulate == 0:
amp_scale.unscale_(optimizer) # unscale gradients
util.clip_gradients(model=self.model, max_norm=10.0) # clip gradients
amp_scale.step(optimizer)
amp_scale.update()
# optimize
if step % accumulate == 0:
# scaler.unscale_(optimizer)
# util.clip_gradients(self.model)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
# # Step when we have 'accumulate' micro-batches, or at the end
# if ((i + 1) % accumulate == 0) or (i + 1 == len(loader)):
# scaler.unscale_(optimizer)
# util.clip_gradients(
# model=(
# self.model.module
# if isinstance(self.model, nn.parallel.DistributedDataParallel)
# else self.model
# ),
# max_norm=10.0,
# )
# scaler.step(optimizer)
# scaler.update()
# optimizer.zero_grad(set_to_none=True)
if ema:
ema.update(self.model)
# Update EMA from the underlying module
ema.update(
self.model.module
if isinstance(self.model, nn.parallel.DistributedDataParallel)
else self.model
)
# print loss to test
print(
f"loss: {total_loss.item() * accumulate:.4f}, box: {box_loss.item():.4f}, cls: {cls_loss.item():.4f}, dfl: {dfl_loss.item():.4f}"
)
torch.cuda.synchronize()
# torch.cuda.synchronize()
# ---- Final average loss (per image) over the whole epoch span ----
avg_loss_per_image = loss_box_meter.avg + loss_cls_meter.avg + loss_dfl_meter.avg
# tqdm update
# if args.local_rank == 0:
# mem = f"{torch.cuda.memory_reserved() / 1e9:.2f}G" if torch.cuda.is_available() else "0.00G"
# desc = ("%10s" * 2 + "%10.4g" * 3) % (
# self.name,
# mem,
# avg_box_loss.avg,
# avg_cls_loss.avg,
# avg_dfl_loss.avg,
# )
# cast(tqdm, p_bar).set_description(desc)
# p_bar.update(1)
# p_bar.close()
# clean
if args.distributed:
# ---- Cleanup DDP ----
if is_ddp:
torch.distributed.destroy_process_group()
torch.cuda.empty_cache()
return (
self.model.state_dict() if not ema else ema.ema.state_dict(),
self.n_data,
{"box_loss": avg_box_loss.avg, "cls_loss": avg_cls_loss.avg, "dfl_loss": avg_dfl_loss.avg},
)
# ---- Choose which weights to return ----
# - If EMA exists, return EMA weights (common YOLO eval practice)
# - Be careful with DDP: grab state_dict from the underlying module / EMA model
if ema:
# print("Using EMA weights")
return (ema.ema.state_dict(), self.n_data, avg_loss_per_image)
else:
# Safely get the underlying module if wrapped by DDP; getattr returns the module or the original object.
model_obj = getattr(self.model, "module", self.model)
# If it's a proper nn.Module, call state_dict(); if it's already a state dict, use it;
# otherwise try to call state_dict() and finally fall back to wrapping the object.
if isinstance(model_obj, torch.nn.Module):
model_to_return = model_obj.state_dict()
elif isinstance(model_obj, dict):
model_to_return = model_obj
else:
try:
model_to_return = model_obj.state_dict()
except Exception:
# fallback: if model_obj is a tensor or unexpected object, wrap it in a dict
model_to_return = {"state": model_obj}
return model_to_return, self.n_data, avg_loss_per_image

View File

@@ -4,6 +4,7 @@ from torch.utils.data import DataLoader
from utils.fed_util import init_model
from utils.dataset import Dataset
from utils import util
from nets import YOLO
class FedYoloServer(object):
@@ -21,7 +22,7 @@ class FedYoloServer(object):
self.client_n_data = {}
self.selected_clients = []
self._batch_size = params.get("val_batch_size", 4)
self._batch_size = params.get("val_batch_size", 200)
self.client_list = client_list
self.valset = None
@@ -40,7 +41,7 @@ class FedYoloServer(object):
self.model = init_model(model_name, self._num_classes)
self.params = params
def load_valset(self, valset):
def load_valset(self, valset: Dataset):
"""Server loads the validation dataset."""
self.valset = valset
@@ -48,78 +49,6 @@ class FedYoloServer(object):
"""Return global model weights."""
return self.model.state_dict()
@torch.no_grad()
def test(self, args) -> dict:
"""
Test the global model on the server's validation set.
Returns:
dict with keys: mAP, mAP50, precision, recall
"""
if self.valset is None:
return {}
loader = DataLoader(
self.valset,
batch_size=self._batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
collate_fn=Dataset.collate_fn,
)
dev = self._device
# move to device for eval; keep in float32 for stability
self.model.eval().to(dev).float()
iou_v = torch.linspace(0.5, 0.95, 10, device=dev)
n_iou = iou_v.numel()
metrics = []
for samples, targets in loader:
samples = samples.to(dev, non_blocking=True).float() / 255.0
_, _, h, w = samples.shape
scale = torch.tensor((w, h, w, h), device=dev)
outputs = self.model(samples)
outputs = util.non_max_suppression(outputs)
for i, output in enumerate(outputs):
idx = targets["idx"] == i
cls = targets["cls"][idx].to(dev)
box = targets["box"][idx].to(dev)
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=dev)
if output.shape[0] == 0:
if cls.shape[0]:
metrics.append((metric, *torch.zeros((2, 0), device=dev), cls.squeeze(-1)))
continue
if cls.shape[0]:
if cls.dim() == 1:
cls = cls.unsqueeze(1)
box_xy = util.wh2xy(box)
if not isinstance(box_xy, torch.Tensor):
box_xy = torch.tensor(box_xy, device=dev)
target = torch.cat((cls, box_xy * scale), dim=1)
metric = util.compute_metric(output[:, :6], target, iou_v)
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
if not metrics:
# move back to CPU before returning
self.model.to("cpu").float()
return {"mAP": 0, "mAP50": 0, "precision": 0, "recall": 0}
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)]
if len(metrics) and metrics[0].any():
_, _, prec, rec, map50, mean_ap = util.compute_ap(*metrics, names=self.params["names"], plot=False)
else:
prec, rec, map50, mean_ap = 0, 0, 0, 0
# return model to CPU so next agg() stays device-consistent
self.model.to("cpu").float()
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
def select_clients(self, connection_ratio=1.0):
"""
Randomly select a fraction of clients.
@@ -130,80 +59,69 @@ class FedYoloServer(object):
self.n_data = 0
for client_id in self.client_list:
# Random selection based on connection ratio
if np.random.rand() <= connection_ratio:
s = np.random.binomial(np.ones(1).astype(int), connection_ratio)
if s[0] == 1:
self.selected_clients.append(client_id)
self.n_data += self.client_n_data.get(client_id, 0)
self.n_data += self.client_n_data[client_id]
@torch.no_grad()
def agg(self):
"""Aggregate client updates (FedAvg) on CPU/FP32, preserving non-float buffers."""
"""
Server aggregates the local updates from selected clients using FedAvg.
:return: model_state: aggregated model weights
:return: avg_loss: weighted average training loss across selected clients
:return: n_data: total number of data points across selected clients
"""
if len(self.selected_clients) == 0 or self.n_data == 0:
return self.model.state_dict(), {}, 0
import warnings
# Ensure global model is on CPU for safe load later
self.model.to("cpu")
global_state = self.model.state_dict() # may hold CPU or CUDA refs; were on CPU now
warnings.warn("No clients selected or no data available for aggregation.")
return self.model.state_dict(), 0, 0
avg_loss = {}
total_n = float(self.n_data)
# Initialize a model for aggregation
model = init_model(model_name=self.model_name, num_classes=self._num_classes)
model_state = model.state_dict()
# Prepare accumulators on CPU. For floating tensors, use float32 zeros.
# For non-floating tensors (e.g., BN num_batches_tracked int64), well copy from the first client.
new_state = {}
first_client = None
for cid in self.selected_clients:
if cid in self.client_state:
first_client = cid
break
avg_loss = 0
assert first_client is not None, "No client states available to aggregate."
for k, v in global_state.items():
if v.is_floating_point():
new_state[k] = torch.zeros_like(v.detach().cpu(), dtype=torch.float32)
else:
# For non-float buffers, just copy from the first client (or keep global)
new_state[k] = self.client_state[first_client][k].clone()
# Accumulate floating tensors with weights; keep non-floats as assigned above
for cid in self.selected_clients:
if cid not in self.client_state:
# Aggregate the local updated models from selected clients
for i, name in enumerate(self.selected_clients):
if name not in self.client_state:
continue
weight = self.client_n_data[cid] / total_n
cst = self.client_state[cid]
for k in new_state.keys():
if new_state[k].is_floating_point():
# cst[k] is CPU; ensure float32 for accumulation
new_state[k].add_(cst[k].to(torch.float32), alpha=weight)
# weighted average losses
for lk, lv in self.client_loss[cid].items():
avg_loss[lk] = avg_loss.get(lk, 0.0) + float(lv) * weight
# Load aggregated state back into the global model (model is on CPU)
with torch.no_grad():
self.model.load_state_dict(new_state, strict=True)
for key in self.client_state[name]:
if i == 0:
# First client, initialize the model_state
model_state[key] = self.client_state[name][key] * (self.client_n_data[name] / self.n_data)
else:
# math equation: w = sum(n_k / n * w_k)
model_state[key] = model_state[key] + self.client_state[name][key] * (
self.client_n_data[name] / self.n_data
)
avg_loss = avg_loss + self.client_loss[name] * (self.client_n_data[name] / self.n_data)
self.model.load_state_dict(model_state, strict=True)
self.round += 1
# Return CPU state_dict (good for broadcasting to clients)
return {k: v.clone() for k, v in self.model.state_dict().items()}, avg_loss, int(self.n_data)
def rec(self, name, state_dict, n_data, loss_dict):
n_data = self.n_data
return model_state, avg_loss, n_data
def rec(self, name, state_dict, n_data, loss):
"""
Receive local update from a client.
- Store all floating tensors as CPU float32
- Store non-floating tensors (e.g., BN counters) as CPU in original dtype
"""
self.n_data += n_data
safe_state = {}
with torch.no_grad():
for k, v in state_dict.items():
t = v.detach().cpu()
if t.is_floating_point():
t = t.to(torch.float32)
safe_state[k] = t
self.client_state[name] = safe_state
self.client_state[name] = {}
self.client_n_data[name] = {}
self.client_loss[name] = {}
self.client_state[name].update(state_dict)
self.client_n_data[name] = int(n_data)
self.client_loss[name] = {k: float(v) for k, v in loss_dict.items()}
self.client_loss[name] = loss
def flush(self):
"""Clear stored client updates."""
@@ -211,3 +129,94 @@ class FedYoloServer(object):
self.client_state.clear()
self.client_n_data.clear()
self.client_loss.clear()
def test(self):
"""Evaluate the global model on the server's validation dataset."""
if self.valset is None:
import warnings
warnings.warn("No validation dataset available for testing.")
return {}
return test(self.valset, self.params, self.model)
@torch.no_grad()
def test(valset: Dataset, params, model: YOLO, batch_size: int = 200) -> tuple[float, float, float, float]:
"""
Evaluate the model on the validation dataset.
Args:
valset: validation dataset
params: dict of parameters (must include 'names')
model: YOLO model to evaluate
batch_size: batch size for evaluation
Returns:
dict with evaluation metrics (tp, fp, m_pre, m_rec, map50, mean_ap)
"""
loader = DataLoader(
dataset=valset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
collate_fn=Dataset.collate_fn,
)
model.cuda()
model.half()
model.eval()
# Configure
iou_v = torch.linspace(start=0.5, end=0.95, steps=10).cuda() # iou vector for mAP@0.5:0.95
n_iou = iou_v.numel()
m_pre = 0
m_rec = 0
map50 = 0
mean_ap = 0
metrics = []
for samples, targets in loader:
samples = samples.cuda()
samples = samples.half() # uint8 to fp16/32
samples = samples / 255.0 # 0 - 255 to 0.0 - 1.0
_, _, h, w = samples.shape # batch-size, channels, height, width
scale = torch.tensor((w, h, w, h)).cuda()
# Inference
outputs = model(samples)
# NMS
outputs = util.non_max_suppression(outputs)
# Metrics
for i, output in enumerate(outputs):
idx = targets["idx"]
if idx.dim() > 1:
idx = idx.squeeze(-1)
idx = idx == i
# idx = targets["idx"] == i
cls = targets["cls"][idx]
box = targets["box"][idx]
cls = cls.cuda()
box = box.cuda()
metric = torch.zeros(output.shape[0], n_iou, dtype=torch.bool).cuda()
if output.shape[0] == 0:
if cls.shape[0]:
metrics.append((metric, *torch.zeros((2, 0)).cuda(), cls.squeeze(-1)))
continue
# Evaluate
if cls.shape[0]:
target = torch.cat(tensors=(cls, util.wh2xy(box) * scale), dim=1)
metric = util.compute_metric(output[:, :6], target, iou_v)
# Append
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
# Compute metrics
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)] # to numpy
if len(metrics) and metrics[0].any():
tp, fp, m_pre, m_rec, map50, mean_ap = util.compute_ap(*metrics, plot=False, names=params["names"])
# Print results
# print(("%10s" + "%10.3g" * 4) % ("", m_pre, m_rec, map50, mean_ap))
# Return results
model.float() # for training
return mean_ap, map50, m_rec, m_pre