优化FedYoloClient和FedYoloServer类

This commit is contained in:
TY1667
2025-10-19 21:27:19 +08:00
parent 101ffa51eb
commit 40de29591b
2 changed files with 270 additions and 232 deletions

View File

@@ -4,6 +4,7 @@ from torch.utils.data import DataLoader
from utils.fed_util import init_model
from utils.dataset import Dataset
from utils import util
from nets import YOLO
class FedYoloServer(object):
@@ -21,7 +22,7 @@ class FedYoloServer(object):
self.client_n_data = {}
self.selected_clients = []
self._batch_size = params.get("val_batch_size", 4)
self._batch_size = params.get("val_batch_size", 200)
self.client_list = client_list
self.valset = None
@@ -40,7 +41,7 @@ class FedYoloServer(object):
self.model = init_model(model_name, self._num_classes)
self.params = params
def load_valset(self, valset):
def load_valset(self, valset: Dataset):
"""Server loads the validation dataset."""
self.valset = valset
@@ -48,78 +49,6 @@ class FedYoloServer(object):
"""Return global model weights."""
return self.model.state_dict()
@torch.no_grad()
def test(self, args) -> dict:
"""
Test the global model on the server's validation set.
Returns:
dict with keys: mAP, mAP50, precision, recall
"""
if self.valset is None:
return {}
loader = DataLoader(
self.valset,
batch_size=self._batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
collate_fn=Dataset.collate_fn,
)
dev = self._device
# move to device for eval; keep in float32 for stability
self.model.eval().to(dev).float()
iou_v = torch.linspace(0.5, 0.95, 10, device=dev)
n_iou = iou_v.numel()
metrics = []
for samples, targets in loader:
samples = samples.to(dev, non_blocking=True).float() / 255.0
_, _, h, w = samples.shape
scale = torch.tensor((w, h, w, h), device=dev)
outputs = self.model(samples)
outputs = util.non_max_suppression(outputs)
for i, output in enumerate(outputs):
idx = targets["idx"] == i
cls = targets["cls"][idx].to(dev)
box = targets["box"][idx].to(dev)
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=dev)
if output.shape[0] == 0:
if cls.shape[0]:
metrics.append((metric, *torch.zeros((2, 0), device=dev), cls.squeeze(-1)))
continue
if cls.shape[0]:
if cls.dim() == 1:
cls = cls.unsqueeze(1)
box_xy = util.wh2xy(box)
if not isinstance(box_xy, torch.Tensor):
box_xy = torch.tensor(box_xy, device=dev)
target = torch.cat((cls, box_xy * scale), dim=1)
metric = util.compute_metric(output[:, :6], target, iou_v)
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
if not metrics:
# move back to CPU before returning
self.model.to("cpu").float()
return {"mAP": 0, "mAP50": 0, "precision": 0, "recall": 0}
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)]
if len(metrics) and metrics[0].any():
_, _, prec, rec, map50, mean_ap = util.compute_ap(*metrics, names=self.params["names"], plot=False)
else:
prec, rec, map50, mean_ap = 0, 0, 0, 0
# return model to CPU so next agg() stays device-consistent
self.model.to("cpu").float()
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
def select_clients(self, connection_ratio=1.0):
"""
Randomly select a fraction of clients.
@@ -130,80 +59,69 @@ class FedYoloServer(object):
self.n_data = 0
for client_id in self.client_list:
# Random selection based on connection ratio
if np.random.rand() <= connection_ratio:
s = np.random.binomial(np.ones(1).astype(int), connection_ratio)
if s[0] == 1:
self.selected_clients.append(client_id)
self.n_data += self.client_n_data.get(client_id, 0)
self.n_data += self.client_n_data[client_id]
@torch.no_grad()
def agg(self):
"""Aggregate client updates (FedAvg) on CPU/FP32, preserving non-float buffers."""
"""
Server aggregates the local updates from selected clients using FedAvg.
:return: model_state: aggregated model weights
:return: avg_loss: weighted average training loss across selected clients
:return: n_data: total number of data points across selected clients
"""
if len(self.selected_clients) == 0 or self.n_data == 0:
return self.model.state_dict(), {}, 0
import warnings
# Ensure global model is on CPU for safe load later
self.model.to("cpu")
global_state = self.model.state_dict() # may hold CPU or CUDA refs; were on CPU now
warnings.warn("No clients selected or no data available for aggregation.")
return self.model.state_dict(), 0, 0
avg_loss = {}
total_n = float(self.n_data)
# Initialize a model for aggregation
model = init_model(model_name=self.model_name, num_classes=self._num_classes)
model_state = model.state_dict()
# Prepare accumulators on CPU. For floating tensors, use float32 zeros.
# For non-floating tensors (e.g., BN num_batches_tracked int64), well copy from the first client.
new_state = {}
first_client = None
for cid in self.selected_clients:
if cid in self.client_state:
first_client = cid
break
avg_loss = 0
assert first_client is not None, "No client states available to aggregate."
for k, v in global_state.items():
if v.is_floating_point():
new_state[k] = torch.zeros_like(v.detach().cpu(), dtype=torch.float32)
else:
# For non-float buffers, just copy from the first client (or keep global)
new_state[k] = self.client_state[first_client][k].clone()
# Accumulate floating tensors with weights; keep non-floats as assigned above
for cid in self.selected_clients:
if cid not in self.client_state:
# Aggregate the local updated models from selected clients
for i, name in enumerate(self.selected_clients):
if name not in self.client_state:
continue
weight = self.client_n_data[cid] / total_n
cst = self.client_state[cid]
for k in new_state.keys():
if new_state[k].is_floating_point():
# cst[k] is CPU; ensure float32 for accumulation
new_state[k].add_(cst[k].to(torch.float32), alpha=weight)
# weighted average losses
for lk, lv in self.client_loss[cid].items():
avg_loss[lk] = avg_loss.get(lk, 0.0) + float(lv) * weight
# Load aggregated state back into the global model (model is on CPU)
with torch.no_grad():
self.model.load_state_dict(new_state, strict=True)
for key in self.client_state[name]:
if i == 0:
# First client, initialize the model_state
model_state[key] = self.client_state[name][key] * (self.client_n_data[name] / self.n_data)
else:
# math equation: w = sum(n_k / n * w_k)
model_state[key] = model_state[key] + self.client_state[name][key] * (
self.client_n_data[name] / self.n_data
)
avg_loss = avg_loss + self.client_loss[name] * (self.client_n_data[name] / self.n_data)
self.model.load_state_dict(model_state, strict=True)
self.round += 1
# Return CPU state_dict (good for broadcasting to clients)
return {k: v.clone() for k, v in self.model.state_dict().items()}, avg_loss, int(self.n_data)
def rec(self, name, state_dict, n_data, loss_dict):
n_data = self.n_data
return model_state, avg_loss, n_data
def rec(self, name, state_dict, n_data, loss):
"""
Receive local update from a client.
- Store all floating tensors as CPU float32
- Store non-floating tensors (e.g., BN counters) as CPU in original dtype
"""
self.n_data += n_data
safe_state = {}
with torch.no_grad():
for k, v in state_dict.items():
t = v.detach().cpu()
if t.is_floating_point():
t = t.to(torch.float32)
safe_state[k] = t
self.client_state[name] = safe_state
self.client_state[name] = {}
self.client_n_data[name] = {}
self.client_loss[name] = {}
self.client_state[name].update(state_dict)
self.client_n_data[name] = int(n_data)
self.client_loss[name] = {k: float(v) for k, v in loss_dict.items()}
self.client_loss[name] = loss
def flush(self):
"""Clear stored client updates."""
@@ -211,3 +129,94 @@ class FedYoloServer(object):
self.client_state.clear()
self.client_n_data.clear()
self.client_loss.clear()
def test(self):
"""Evaluate the global model on the server's validation dataset."""
if self.valset is None:
import warnings
warnings.warn("No validation dataset available for testing.")
return {}
return test(self.valset, self.params, self.model)
@torch.no_grad()
def test(valset: Dataset, params, model: YOLO, batch_size: int = 200) -> tuple[float, float, float, float]:
"""
Evaluate the model on the validation dataset.
Args:
valset: validation dataset
params: dict of parameters (must include 'names')
model: YOLO model to evaluate
batch_size: batch size for evaluation
Returns:
dict with evaluation metrics (tp, fp, m_pre, m_rec, map50, mean_ap)
"""
loader = DataLoader(
dataset=valset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
collate_fn=Dataset.collate_fn,
)
model.cuda()
model.half()
model.eval()
# Configure
iou_v = torch.linspace(start=0.5, end=0.95, steps=10).cuda() # iou vector for mAP@0.5:0.95
n_iou = iou_v.numel()
m_pre = 0
m_rec = 0
map50 = 0
mean_ap = 0
metrics = []
for samples, targets in loader:
samples = samples.cuda()
samples = samples.half() # uint8 to fp16/32
samples = samples / 255.0 # 0 - 255 to 0.0 - 1.0
_, _, h, w = samples.shape # batch-size, channels, height, width
scale = torch.tensor((w, h, w, h)).cuda()
# Inference
outputs = model(samples)
# NMS
outputs = util.non_max_suppression(outputs)
# Metrics
for i, output in enumerate(outputs):
idx = targets["idx"]
if idx.dim() > 1:
idx = idx.squeeze(-1)
idx = idx == i
# idx = targets["idx"] == i
cls = targets["cls"][idx]
box = targets["box"][idx]
cls = cls.cuda()
box = box.cuda()
metric = torch.zeros(output.shape[0], n_iou, dtype=torch.bool).cuda()
if output.shape[0] == 0:
if cls.shape[0]:
metrics.append((metric, *torch.zeros((2, 0)).cuda(), cls.squeeze(-1)))
continue
# Evaluate
if cls.shape[0]:
target = torch.cat(tensors=(cls, util.wh2xy(box) * scale), dim=1)
metric = util.compute_metric(output[:, :6], target, iou_v)
# Append
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
# Compute metrics
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)] # to numpy
if len(metrics) and metrics[0].any():
tp, fp, m_pre, m_rec, map50, mean_ap = util.compute_ap(*metrics, plot=False, names=params["names"])
# Print results
# print(("%10s" + "%10.3g" * 4) % ("", m_pre, m_rec, map50, mean_ap))
# Return results
model.float() # for training
return mean_ap, map50, m_rec, m_pre