diff --git a/fed_algo_cs/client_base.py b/fed_algo_cs/client_base.py index 7d86735..85ea227 100644 --- a/fed_algo_cs/client_base.py +++ b/fed_algo_cs/client_base.py @@ -120,7 +120,7 @@ class FedYoloClient(object): # track_model = self.model.module if is_ddp else self.model ema = util.EMA(self.model) if args.local_rank == 0 else None - print(type(self.train_dataset)) + # print(type(self.train_dataset)) # ---- Data ---- dataset = Dataset( @@ -188,7 +188,7 @@ class FedYoloClient(object): loss_dfl_meter = util.AverageMeter() for i, (images, targets) in enumerate(loader): - print(f"Client {self.name} - Epoch {epoch + 1}/{args.epochs} - Step {i + 1}/{num_steps}") + # print(f"Client {self.name} - Epoch {epoch + 1}/{args.epochs} - Step {i + 1}/{num_steps}") step = i + epoch * num_steps # scheduler per-step (your util.LinearLR expects step) @@ -257,9 +257,9 @@ class FedYoloClient(object): else self.model ) # print loss to test - print( - f"loss: {total_loss.item() * accumulate:.4f}, box: {box_loss.item():.4f}, cls: {cls_loss.item():.4f}, dfl: {dfl_loss.item():.4f}" - ) + # print( + # f"loss: {total_loss.item() * accumulate:.4f}, box: {box_loss.item():.4f}, cls: {cls_loss.item():.4f}, dfl: {dfl_loss.item():.4f}" + # ) torch.cuda.synchronize() # ---- Final average loss (per image) over the whole epoch span ----