Compare commits
5 Commits
964a8024c0
...
main
Author | SHA1 | Date | |
---|---|---|---|
101ffa51eb | |||
beaa290c19 | |||
86c7579b42 | |||
33586e0c0c | |||
9a5e6b5b71 |
21
README.md
21
README.md
@@ -1,3 +1,24 @@
|
||||
# fed-yolo
|
||||
|
||||
Combine Federated Learning with YOLOv11.
|
||||
|
||||
## requirements
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## how to run
|
||||
```bash
|
||||
nohup python fed_run.py > train.log 2>&1 &
|
||||
```
|
||||
|
||||
## results
|
||||
|
||||
## TODO
|
||||
- Add more FL algorithms (e.g., FedProx, FedAvgM, etc.)
|
||||
- Implement FedProx
|
||||
- Implement SCAFFOLD
|
||||
- Implement FedNova
|
||||
- Add more YOLO versions (e.g., YOLOv8, YOLOv5, etc.)
|
||||
- Implement YOLOv8
|
||||
- Implement YOLOv5
|
126
config/coco128_cfg.yaml
Normal file
126
config/coco128_cfg.yaml
Normal file
@@ -0,0 +1,126 @@
|
||||
# global system:
|
||||
fed_algo: "FedAvg" # federated learning algorithm
|
||||
model_name: "yolo_v11_n" # yolo_v11_n, yolo_v11_t, yolo_v11_s, yolo_v11_m, yolo_v11_l, yolo_v11_x
|
||||
i_seed: 202509 # initial random seed
|
||||
|
||||
num_client: 5 # total number of clients
|
||||
num_round: 5 # total number of communication rounds
|
||||
num_local_class: 80 # number of classes per client
|
||||
|
||||
res_root: "results" # root directory for results
|
||||
dataset_path: "/mnt/DATA/COCO128/"
|
||||
# train_txt: "train.txt" # path to training set txt file
|
||||
# val_txt: "val.txt" # path to validation set txt file
|
||||
# test_txt: "test.txt" # path to test set txt file
|
||||
|
||||
local_batch_size: 32 # local training batch size
|
||||
val_batch_size: 4 # validation batch size
|
||||
|
||||
num_workers: 4 # number of data loader workers
|
||||
min_data: 128 # minimum number of images per client
|
||||
max_data: 128 # maximum number of images per client
|
||||
partition_mode: "overlap" # "overlap" or "disjoint"
|
||||
connection_ratio: 1 # connection ratio, e.g., 1.0 means all clients
|
||||
|
||||
# local training:
|
||||
min_lr: 0.000100000000 # initial learning rate
|
||||
max_lr: 0.010000000000 # maximum learning rate
|
||||
momentum: 0.9370000000 # SGD momentum/Adam beta1
|
||||
weight_decay: 0.000500 # optimizer weight decay
|
||||
|
||||
warmup_epochs: 3.00000 # warmup epochs
|
||||
box: 7.500000000000000 # box loss gain
|
||||
cls: 0.500000000000000 # cls loss gain
|
||||
dfl: 1.500000000000000 # dfl loss gain
|
||||
hsv_h: 0.0150000000000 # image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7000000000000 # image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.4000000000000 # image HSV-Value augmentation (fraction)
|
||||
degrees: 0.00000000000 # image rotation (+/- deg)
|
||||
translate: 0.100000000 # image translation (+/- fraction)
|
||||
scale: 0.5000000000000 # image scale (+/- gain)
|
||||
shear: 0.0000000000000 # image shear (+/- deg)
|
||||
flip_ud: 0.00000000000 # image flip up-down (probability)
|
||||
flip_lr: 0.50000000000 # image flip left-right (probability)
|
||||
mosaic: 1.000000000000 # image mosaic (probability)
|
||||
mix_up: 0.000000000000 # image mix-up (probability)
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
@@ -3,6 +3,7 @@ import torch
|
||||
from torch import nn
|
||||
from torch.utils import data
|
||||
from torch.amp.autocast_mode import autocast
|
||||
from tqdm import tqdm
|
||||
from utils.fed_util import init_model
|
||||
from utils import util
|
||||
from utils.dataset import Dataset
|
||||
@@ -152,7 +153,6 @@ class FedYoloClient(object):
|
||||
|
||||
# Scheduler
|
||||
num_steps = max(1, len(loader))
|
||||
# print(len(loader))
|
||||
scheduler = util.LinearLR(args=args, params=self.params, num_steps=num_steps)
|
||||
# DDP mode
|
||||
if args.distributed:
|
||||
@@ -167,7 +167,12 @@ class FedYoloClient(object):
|
||||
amp_scale = torch.amp.grad_scaler.GradScaler(enabled=True)
|
||||
criterion = util.ComputeLoss(self.model, self.params)
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
# log
|
||||
# if args.local_rank == 0:
|
||||
# header = ("%10s" * 5) % ("client", "memory", "box", "cls", "dfl")
|
||||
# print("\n" + header)
|
||||
# p_bar = tqdm(total=args.epochs * num_steps, ncols=120)
|
||||
# p_bar.set_description(f"{self.name:>10}")
|
||||
|
||||
for epoch in range(args.epochs):
|
||||
self.model.train()
|
||||
@@ -180,10 +185,20 @@ class FedYoloClient(object):
|
||||
ds = cast(Dataset, loader.dataset)
|
||||
ds.mosaic = False
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
avg_box_loss = util.AverageMeter()
|
||||
avg_cls_loss = util.AverageMeter()
|
||||
avg_dfl_loss = util.AverageMeter()
|
||||
|
||||
# # --- header (once per epoch, YOLO-style) ---
|
||||
# if args.local_rank == 0:
|
||||
# header = ("%10s" * 5) % ("client", "memory", "box", "cls", "dfl")
|
||||
# print("\n" + header)
|
||||
|
||||
# p_bar = enumerate(loader)
|
||||
# if args.local_rank == 0:
|
||||
# p_bar = tqdm(p_bar, total=num_steps, ncols=120)
|
||||
|
||||
for i, (samples, targets) in enumerate(loader):
|
||||
global_step = i + num_steps * epoch
|
||||
scheduler.step(step=global_step, optimizer=optimizer)
|
||||
@@ -195,24 +210,26 @@ class FedYoloClient(object):
|
||||
outputs = self.model(samples)
|
||||
box_loss, cls_loss, dfl_loss = criterion(outputs, targets)
|
||||
|
||||
# meters (use the *unscaled* values)
|
||||
bs = samples.size(0)
|
||||
avg_box_loss.update(box_loss.item(), bs)
|
||||
avg_cls_loss.update(cls_loss.item(), bs)
|
||||
avg_dfl_loss.update(dfl_loss.item(), bs)
|
||||
# meters (use the *unscaled* values)
|
||||
bs = samples.size(0)
|
||||
avg_box_loss.update(box_loss.item(), bs)
|
||||
avg_cls_loss.update(cls_loss.item(), bs)
|
||||
avg_dfl_loss.update(dfl_loss.item(), bs)
|
||||
|
||||
# scale losses by batch/world if your loss is averaged internally per-sample/device
|
||||
box_loss = box_loss * self._batch_size * args.world_size
|
||||
cls_loss = cls_loss * self._batch_size * args.world_size
|
||||
dfl_loss = dfl_loss * self._batch_size * args.world_size
|
||||
# scale losses by batch/world if your loss is averaged internally per-sample/device
|
||||
# box_loss = box_loss * self._batch_size * args.world_size
|
||||
# cls_loss = cls_loss * self._batch_size * args.world_size
|
||||
# dfl_loss = dfl_loss * self._batch_size * args.world_size
|
||||
|
||||
total_loss = box_loss + cls_loss + dfl_loss
|
||||
total_loss = box_loss + cls_loss + dfl_loss
|
||||
|
||||
# Backward
|
||||
amp_scale.scale(total_loss).backward()
|
||||
|
||||
# Optimize
|
||||
if (i + 1) % accumulate == 0:
|
||||
amp_scale.unscale_(optimizer) # unscale gradients
|
||||
util.clip_gradients(model=self.model, max_norm=10.0) # clip gradients
|
||||
amp_scale.step(optimizer)
|
||||
amp_scale.update()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
@@ -221,13 +238,28 @@ class FedYoloClient(object):
|
||||
|
||||
# torch.cuda.synchronize()
|
||||
|
||||
# tqdm update
|
||||
# if args.local_rank == 0:
|
||||
# mem = f"{torch.cuda.memory_reserved() / 1e9:.2f}G" if torch.cuda.is_available() else "0.00G"
|
||||
# desc = ("%10s" * 2 + "%10.4g" * 3) % (
|
||||
# self.name,
|
||||
# mem,
|
||||
# avg_box_loss.avg,
|
||||
# avg_cls_loss.avg,
|
||||
# avg_dfl_loss.avg,
|
||||
# )
|
||||
# cast(tqdm, p_bar).set_description(desc)
|
||||
# p_bar.update(1)
|
||||
|
||||
# p_bar.close()
|
||||
|
||||
# clean
|
||||
if args.distributed:
|
||||
torch.distributed.destroy_process_group()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return (
|
||||
self.model.state_dict(),
|
||||
self.model.state_dict() if not ema else ema.ema.state_dict(),
|
||||
self.n_data,
|
||||
{"box_loss": avg_box_loss.avg, "cls_loss": avg_cls_loss.avg, "dfl_loss": avg_dfl_loss.avg},
|
||||
)
|
||||
|
@@ -49,11 +49,11 @@ class FedYoloServer(object):
|
||||
return self.model.state_dict()
|
||||
|
||||
@torch.no_grad()
|
||||
def test(self, args):
|
||||
def test(self, args) -> dict:
|
||||
"""
|
||||
Evaluate global model on validation set using YOLO metrics (mAP, precision, recall).
|
||||
Test the global model on the server's validation set.
|
||||
Returns:
|
||||
dict with {"mAP": ..., "mAP50": ..., "precision": ..., "recall": ...}
|
||||
dict with keys: mAP, mAP50, precision, recall
|
||||
"""
|
||||
if self.valset is None:
|
||||
return {}
|
||||
@@ -67,46 +67,47 @@ class FedYoloServer(object):
|
||||
collate_fn=Dataset.collate_fn,
|
||||
)
|
||||
|
||||
self.model.to(self._device).eval().half()
|
||||
dev = self._device
|
||||
# move to device for eval; keep in float32 for stability
|
||||
self.model.eval().to(dev).float()
|
||||
|
||||
iou_v = torch.linspace(0.5, 0.95, 10).to(self._device) # IoU thresholds
|
||||
iou_v = torch.linspace(0.5, 0.95, 10, device=dev)
|
||||
n_iou = iou_v.numel()
|
||||
metrics = []
|
||||
|
||||
for samples, targets in loader:
|
||||
samples = samples.to(self._device).half() / 255.0
|
||||
samples = samples.to(dev, non_blocking=True).float() / 255.0
|
||||
_, _, h, w = samples.shape
|
||||
scale = torch.tensor((w, h, w, h)).to(self._device)
|
||||
scale = torch.tensor((w, h, w, h), device=dev)
|
||||
|
||||
outputs = self.model(samples)
|
||||
outputs = util.non_max_suppression(outputs)
|
||||
|
||||
for i, output in enumerate(outputs):
|
||||
idx = targets["idx"] == i
|
||||
cls = targets["cls"][idx].to(self._device)
|
||||
box = targets["box"][idx].to(self._device)
|
||||
|
||||
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=self._device)
|
||||
cls = targets["cls"][idx].to(dev)
|
||||
box = targets["box"][idx].to(dev)
|
||||
|
||||
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=dev)
|
||||
if output.shape[0] == 0:
|
||||
if cls.shape[0]:
|
||||
metrics.append((metric, *torch.zeros((2, 0), device=self._device), cls.squeeze(-1)))
|
||||
metrics.append((metric, *torch.zeros((2, 0), device=dev), cls.squeeze(-1)))
|
||||
continue
|
||||
|
||||
if cls.shape[0]:
|
||||
cls_tensor = cls if isinstance(cls, torch.Tensor) else torch.tensor(cls, device=self._device)
|
||||
if cls_tensor.dim() == 1:
|
||||
cls_tensor = cls_tensor.unsqueeze(1)
|
||||
if cls.dim() == 1:
|
||||
cls = cls.unsqueeze(1)
|
||||
box_xy = util.wh2xy(box)
|
||||
if not isinstance(box_xy, torch.Tensor):
|
||||
box_xy = torch.tensor(box_xy, device=self._device)
|
||||
target = torch.cat((cls_tensor, box_xy * scale), dim=1)
|
||||
box_xy = torch.tensor(box_xy, device=dev)
|
||||
target = torch.cat((cls, box_xy * scale), dim=1)
|
||||
metric = util.compute_metric(output[:, :6], target, iou_v)
|
||||
|
||||
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
|
||||
|
||||
# Compute metrics
|
||||
if not metrics:
|
||||
# move back to CPU before returning
|
||||
self.model.to("cpu").float()
|
||||
return {"mAP": 0, "mAP50": 0, "precision": 0, "recall": 0}
|
||||
|
||||
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)]
|
||||
@@ -115,9 +116,8 @@ class FedYoloServer(object):
|
||||
else:
|
||||
prec, rec, map50, mean_ap = 0, 0, 0, 0
|
||||
|
||||
# Back to float32 for further training
|
||||
self.model.float()
|
||||
|
||||
# return model to CPU so next agg() stays device-consistent
|
||||
self.model.to("cpu").float()
|
||||
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
|
||||
|
||||
def select_clients(self, connection_ratio=1.0):
|
||||
@@ -135,53 +135,75 @@ class FedYoloServer(object):
|
||||
self.n_data += self.client_n_data.get(client_id, 0)
|
||||
|
||||
def agg(self):
|
||||
"""
|
||||
Aggregate client updates (FedAvg).
|
||||
Returns:
|
||||
global_state: aggregated model state dictionary
|
||||
avg_loss: dict of averaged losses
|
||||
n_data: total number of data classes samples used in this round
|
||||
"""
|
||||
"""Aggregate client updates (FedAvg) on CPU/FP32, preserving non-float buffers."""
|
||||
if len(self.selected_clients) == 0 or self.n_data == 0:
|
||||
return self.model.state_dict(), {}, 0
|
||||
|
||||
# start from current global model
|
||||
global_state = self.model.state_dict()
|
||||
|
||||
# zero buffer for accumulation
|
||||
new_state = {k: torch.zeros_like(v, dtype=torch.float32) for k, v in global_state.items()}
|
||||
# Ensure global model is on CPU for safe load later
|
||||
self.model.to("cpu")
|
||||
global_state = self.model.state_dict() # may hold CPU or CUDA refs; we’re on CPU now
|
||||
|
||||
avg_loss = {}
|
||||
for name in self.selected_clients:
|
||||
if name not in self.client_state:
|
||||
total_n = float(self.n_data)
|
||||
|
||||
# Prepare accumulators on CPU. For floating tensors, use float32 zeros.
|
||||
# For non-floating tensors (e.g., BN num_batches_tracked int64), we’ll copy from the first client.
|
||||
new_state = {}
|
||||
first_client = None
|
||||
for cid in self.selected_clients:
|
||||
if cid in self.client_state:
|
||||
first_client = cid
|
||||
break
|
||||
|
||||
assert first_client is not None, "No client states available to aggregate."
|
||||
|
||||
for k, v in global_state.items():
|
||||
if v.is_floating_point():
|
||||
new_state[k] = torch.zeros_like(v.detach().cpu(), dtype=torch.float32)
|
||||
else:
|
||||
# For non-float buffers, just copy from the first client (or keep global)
|
||||
new_state[k] = self.client_state[first_client][k].clone()
|
||||
|
||||
# Accumulate floating tensors with weights; keep non-floats as assigned above
|
||||
for cid in self.selected_clients:
|
||||
if cid not in self.client_state:
|
||||
continue
|
||||
weight = self.client_n_data[name] / self.n_data
|
||||
weight = self.client_n_data[cid] / total_n
|
||||
cst = self.client_state[cid]
|
||||
for k in new_state.keys():
|
||||
# accumulate in float32 to avoid fp16 issues
|
||||
new_state[k] += self.client_state[name][k].to(torch.float32) * weight
|
||||
if new_state[k].is_floating_point():
|
||||
# cst[k] is CPU; ensure float32 for accumulation
|
||||
new_state[k].add_(cst[k].to(torch.float32), alpha=weight)
|
||||
|
||||
# losses
|
||||
for k, v in self.client_loss[name].items():
|
||||
avg_loss[k] = avg_loss.get(k, 0.0) + v * weight
|
||||
# weighted average losses
|
||||
for lk, lv in self.client_loss[cid].items():
|
||||
avg_loss[lk] = avg_loss.get(lk, 0.0) + float(lv) * weight
|
||||
|
||||
# Load aggregated state back into the global model (model is on CPU)
|
||||
with torch.no_grad():
|
||||
self.model.load_state_dict(new_state, strict=True)
|
||||
|
||||
# load aggregated params back into global model
|
||||
self.model.load_state_dict(new_state, strict=True)
|
||||
self.round += 1
|
||||
return self.model.state_dict(), avg_loss, self.n_data
|
||||
# Return CPU state_dict (good for broadcasting to clients)
|
||||
return {k: v.clone() for k, v in self.model.state_dict().items()}, avg_loss, int(self.n_data)
|
||||
|
||||
def rec(self, name, state_dict, n_data, loss_dict):
|
||||
"""
|
||||
Receive local update from a client.
|
||||
Args:
|
||||
name: client ID
|
||||
state_dict: state dictionary of the local model
|
||||
n_data: number of data samples used in local training
|
||||
loss_dict: dict of losses from local training
|
||||
- Store all floating tensors as CPU float32
|
||||
- Store non-floating tensors (e.g., BN counters) as CPU in original dtype
|
||||
"""
|
||||
self.n_data += n_data
|
||||
self.client_state[name] = {k: v.cpu() for k, v in state_dict.items()}
|
||||
self.client_n_data[name] = n_data
|
||||
self.client_loss[name] = loss_dict
|
||||
safe_state = {}
|
||||
with torch.no_grad():
|
||||
for k, v in state_dict.items():
|
||||
t = v.detach().cpu()
|
||||
if t.is_floating_point():
|
||||
t = t.to(torch.float32)
|
||||
safe_state[k] = t
|
||||
self.client_state[name] = safe_state
|
||||
self.client_n_data[name] = int(n_data)
|
||||
self.client_loss[name] = {k: float(v) for k, v in loss_dict.items()}
|
||||
|
||||
def flush(self):
|
||||
"""Clear stored client updates."""
|
||||
|
41
fed_run.py
41
fed_run.py
@@ -13,8 +13,8 @@ import matplotlib.pyplot as plt
|
||||
from utils.dataset import Dataset
|
||||
from fed_algo_cs.client_base import FedYoloClient
|
||||
from fed_algo_cs.server_base import FedYoloServer
|
||||
from utils.args import args_parser # your args parser
|
||||
from utils.fed_util import divide_trainset # divide_trainset is yours
|
||||
from utils.args import args_parser # args parser
|
||||
from utils.fed_util import divide_trainset # divide_trainset
|
||||
|
||||
|
||||
def _read_list_file(txt_path: str):
|
||||
@@ -132,7 +132,7 @@ def fed_run():
|
||||
num_client=int(cfg.get("num_client", 64)),
|
||||
min_data=int(cfg.get("min_data", 100)),
|
||||
max_data=int(cfg.get("max_data", 100)),
|
||||
mode=str(cfg.get("partition_mode", "disjoint")), # "overlap" or "disjoint"
|
||||
mode=str(cfg.get("partition_mode", "overlap")), # "overlap" or "disjoint"
|
||||
seed=int(cfg.get("i_seed", 0)),
|
||||
)
|
||||
|
||||
@@ -143,7 +143,7 @@ def fed_run():
|
||||
model_name = cfg.get("model_name", "yolo_v11_n")
|
||||
clients = {}
|
||||
|
||||
for uid in tqdm(users, desc="Building clients", leave=True, unit="client"):
|
||||
for uid in users:
|
||||
c = FedYoloClient(name=uid, model_name=model_name, params=params)
|
||||
c.load_trainset(user_data[uid]["filename"])
|
||||
clients[uid] = c
|
||||
@@ -177,11 +177,16 @@ def fed_run():
|
||||
res_root = cfg.get("res_root", "results")
|
||||
os.makedirs(res_root, exist_ok=True)
|
||||
|
||||
for rnd in tqdm(range(num_round), desc="main federal loop round:"):
|
||||
t0 = time.time()
|
||||
# tqdm logging
|
||||
header = ("%10s" * 2) % ("Round", "client")
|
||||
tqdm.write("\n" + header)
|
||||
p_bar = tqdm(total=num_round, ncols=160, ascii="->>")
|
||||
|
||||
for rnd in range(num_round):
|
||||
t0 = time.time()
|
||||
# Local training (sequential over all users)
|
||||
for uid in tqdm(users, desc=f"Round {rnd + 1} local training: ", leave=False):
|
||||
for uid in users:
|
||||
p_bar.set_description_str(("%10s" * 2) % (f"{rnd + 1}/{num_round}", f"{uid}"))
|
||||
client = clients[uid] # FedYoloClient instance
|
||||
client.update(global_state) # load global weights
|
||||
state_dict, n_data, loss_dict = client.train(args_cli) # local training
|
||||
@@ -214,12 +219,18 @@ def fed_run():
|
||||
history["train_loss"].append(scalar_train_loss)
|
||||
history["round_time_sec"].append(time.time() - t0)
|
||||
|
||||
tqdm.write(
|
||||
f"[round {rnd + 1:04d}] "
|
||||
f"loss={scalar_train_loss:.4f} mAP50-95={mAP:.4f} mAP50={mAP50:.4f} "
|
||||
f"P={precision:.4f} R={recall:.4f}"
|
||||
f"\n"
|
||||
)
|
||||
# Log GPU memory usage
|
||||
# gpu_mem = f"{torch.cuda.memory_reserved() / 1e9:.2f}G" if torch.cuda.is_available() else "0.00G"
|
||||
# tqdm update
|
||||
desc = {
|
||||
"loss": f"{scalar_train_loss:.6g}",
|
||||
"mAP50": f"{mAP50:.6g}",
|
||||
"mAP": f"{mAP:.6g}",
|
||||
"precision": f"{precision:.6g}",
|
||||
"recall": f"{recall:.6g}",
|
||||
# "gpu_mem": gpu_mem,
|
||||
}
|
||||
p_bar.set_postfix(desc)
|
||||
|
||||
# Save running JSON (resumable logs)
|
||||
save_name = (
|
||||
@@ -232,6 +243,10 @@ def fed_run():
|
||||
with open(out_json, "w", encoding="utf-8") as f:
|
||||
json.dump(history, f, indent=2)
|
||||
|
||||
p_bar.update(1)
|
||||
|
||||
p_bar.close()
|
||||
|
||||
# --- final plot ---
|
||||
_plot_curves(res_root, history)
|
||||
print("[done] training complete.")
|
||||
|
@@ -151,7 +151,7 @@ def non_max_suppression(outputs, confidence_threshold=0.001, iou_threshold=0.65)
|
||||
box = wh2xy(box) # (cx, cy, w, h) to (x1, y1, x2, y2)
|
||||
if nc > 1:
|
||||
i, j = (cls > confidence_threshold).nonzero(as_tuple=False).T
|
||||
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float()), dim=1)
|
||||
x = torch.cat((box[i], x[i, 4 + j].unsqueeze(1), j[:, None].float()), dim=1)
|
||||
else: # best class only
|
||||
conf, j = cls.max(1, keepdim=True)
|
||||
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > confidence_threshold]
|
||||
@@ -296,7 +296,8 @@ def compute_ap(tp, conf, output, target, plot=False, names=(), eps=1e-16):
|
||||
|
||||
# Integrate area under curve
|
||||
x = numpy.linspace(start=0, stop=1, num=101) # 101-point interp (COCO)
|
||||
ap[ci, j] = numpy.trapz(numpy.interp(x, m_rec, m_pre), x) # integrate
|
||||
# numpy.trapz is deprecated in numpy 2.0.0 or after version, use numpy.trapezoid instead
|
||||
ap[ci, j] = numpy.trapezoid(numpy.interp(x, m_rec, m_pre), x) # integrate
|
||||
if plot and j == 0:
|
||||
py.append(numpy.interp(px, m_rec, m_pre)) # precision at mAP@0.5
|
||||
|
||||
|
Reference in New Issue
Block a user