import numpy as np import torch from torch.utils.data import DataLoader from utils.fed_util import init_model from utils.dataset import Dataset from utils import util class FedYoloServer(object): def __init__(self, client_list, model_name, params): """ Federated YOLO Server Args: client_list: list of connected clients model_name: YOLO model architecture name params: dict of hyperparameters (must include 'names') """ # Track client updates self.client_state = {} self.client_loss = {} self.client_n_data = {} self.selected_clients = [] self._batch_size = params.get("val_batch_size", 4) self.client_list = client_list self.valset = None # Federated bookkeeping self.round = 0 # Total number of classes self.n_data = 0 # Device gpu = 0 self._device = torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu") # Global model self._num_classes = len(params["names"]) self.model_name = model_name self.model = init_model(model_name, self._num_classes) self.params = params def load_valset(self, valset): """Server loads the validation dataset.""" self.valset = valset def state_dict(self): """Return global model weights.""" return self.model.state_dict() @torch.no_grad() def test(self, args): """ Evaluate global model on validation set using YOLO metrics (mAP, precision, recall). Returns: dict with {"mAP": ..., "mAP50": ..., "precision": ..., "recall": ...} """ if self.valset is None: return {} loader = DataLoader( self.valset, batch_size=self._batch_size, shuffle=False, num_workers=4, pin_memory=True, collate_fn=Dataset.collate_fn, ) self.model.to(self._device).eval().half() iou_v = torch.linspace(0.5, 0.95, 10).to(self._device) # IoU thresholds n_iou = iou_v.numel() metrics = [] for samples, targets in loader: samples = samples.to(self._device).half() / 255.0 _, _, h, w = samples.shape scale = torch.tensor((w, h, w, h)).to(self._device) outputs = self.model(samples) outputs = util.non_max_suppression(outputs) for i, output in enumerate(outputs): idx = targets["idx"] == i cls = targets["cls"][idx].to(self._device) box = targets["box"][idx].to(self._device) metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=self._device) if output.shape[0] == 0: if cls.shape[0]: metrics.append((metric, *torch.zeros((2, 0), device=self._device), cls.squeeze(-1))) continue if cls.shape[0]: cls_tensor = cls if isinstance(cls, torch.Tensor) else torch.tensor(cls, device=self._device) if cls_tensor.dim() == 1: cls_tensor = cls_tensor.unsqueeze(1) box_xy = util.wh2xy(box) if not isinstance(box_xy, torch.Tensor): box_xy = torch.tensor(box_xy, device=self._device) target = torch.cat((cls_tensor, box_xy * scale), dim=1) metric = util.compute_metric(output[:, :6], target, iou_v) metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1))) # Compute metrics if not metrics: return {"mAP": 0, "mAP50": 0, "precision": 0, "recall": 0} metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)] if len(metrics) and metrics[0].any(): _, _, prec, rec, map50, mean_ap = util.compute_ap(*metrics, names=self.params["names"], plot=False) else: prec, rec, map50, mean_ap = 0, 0, 0, 0 # Back to float32 for further training self.model.float() return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)} def select_clients(self, connection_ratio=1.0): """Randomly select a fraction of clients.""" self.selected_clients = [] self.n_data = 0 for client_id in self.client_list: if np.random.rand() <= connection_ratio: self.selected_clients.append(client_id) self.n_data += self.client_n_data.get(client_id, 0) def agg(self): """Aggregate client updates (FedAvg).""" if len(self.selected_clients) == 0 or self.n_data == 0: return self.model.state_dict(), {}, 0 model = init_model(self.model_name, self._num_classes) model_state = model.state_dict() avg_loss = {} for i, name in enumerate(self.selected_clients): if name not in self.client_state: continue weight = self.client_n_data[name] / self.n_data for key in model_state.keys(): if i == 0: model_state[key] = self.client_state[name][key] * weight else: model_state[key] += self.client_state[name][key] * weight # Weighted average losses for k, v in self.client_loss[name].items(): avg_loss[k] = avg_loss.get(k, 0.0) + v * weight self.model.load_state_dict(model_state, strict=True) self.round += 1 return model_state, avg_loss, self.n_data def rec(self, name, state_dict, n_data, loss_dict): """ Receive local update from a client. Args: name: client ID state_dict: state dictionary of the local model n_data: number of data samples used in local training loss_dict: dict of losses from local training """ self.n_data += n_data self.client_state[name] = {k: v.cpu() for k, v in state_dict.items()} self.client_n_data[name] = n_data self.client_loss[name] = loss_dict def flush(self): """Clear stored client updates.""" self.n_data = 0 self.client_state.clear() self.client_n_data.clear() self.client_loss.clear()